CSE383M and CS395T Surprise Quiz

April 10, 2013

This test is closed notes, books, and computers.

The distribution Exponential(β) has the pdf $p(x) = \beta e^{-\beta x}$, with $0 \le x < \infty$. (I'm sure you knew that!)

1. (10 points) An value x is chosen with probability c from Exponential(β_1), otherwise from Exponential(β_2). What is x's pdf, p(x)?

2. (15 points) For i = 1, ..., N, you are given a set of probabilities p_i with $\sum_i p_i = 1$, and a set of positive values β_i . A value of i is drawn with probability p_i , and a value x is then drawn from Exponential (β_i) . Write an expression for x's pdf, p(x). If you use any sum signs, be sure to include their lower and upper limits.

3. (25 points) A value β is drawn from the distribution Exponential(α). A value x is then drawn from the distribution Exponential(β). What is x's pdf, p(x)?

Hints: (i) Your answer should not contain the symbol " β ". (ii) Here is a possibly useful definite integral:

$$\int_0^\infty r e^{-\lambda r} dr = \frac{1}{\lambda^2}$$

Bill's Solution Set
Quiz 4/10/13
1. It's a mixture of the 2 pdfs with weights

$$C \text{ and } (1-c):$$

 $p(x) = C\beta_1 \in \beta_1 \times + (1-c)\beta_2 \in \beta_2 \times , x>0$
2. It's a mixture of N pdfs with weights β_1
 $p(x) = \sum_{i=1}^{N} \beta_i \beta_i e^{-\beta_i \times} , x>0$
3. This is the fun problem. It's a continuous
mixture! Since β is drawn from Exprovidial(\propto)
 n has weights $\alpha \in \beta_1 \beta$ and the sum in
problem 2 becomes an integral. So
 $p(x) = \int_{0}^{\infty} \alpha e^{-\alpha\beta} \beta_1 e^{-\beta \times} d\beta$
 $= \alpha \int_{0}^{\infty} e^{-\beta(\alpha+x)} d\beta$ see poblem
 $= \frac{\alpha}{(\alpha+x)^2}, x>0$
(I then checked that the integral of this (Jx is 1,
but you don't have to.)