Difference between revisions of "Segment 17. The Multivariate Normal Distribution"

From Computational Statistics Course Wiki
Jump to navigation Jump to search
(Class Activity)
 
Line 11: Line 11:
 
The direct YouTube link is [http://youtu.be/t7Z1a_BOkN4 http://youtu.be/t7Z1a_BOkN4]
 
The direct YouTube link is [http://youtu.be/t7Z1a_BOkN4 http://youtu.be/t7Z1a_BOkN4]
  
Links to the slides: [http://slate.ices.utexas.edu/coursefiles/17.MultivariateNormal.pdf PDF file] or [http://slate.ices.utexas.edu/coursefiles/17.MultivariateNormal.ppt PowerPoint file]
+
Links to the slides: [http://wpressutexas.net/coursefiles/17.MultivariateNormal.pdf PDF file] or [http://wpressutexas.net/coursefiles/17.MultivariateNormal.ppt PowerPoint file]
  
 
===Problems===
 
===Problems===
Line 46: Line 46:
 
[[Media:somematrices.txt|Some 3x3 Matrices]]
 
[[Media:somematrices.txt|Some 3x3 Matrices]]
  
[http://granite.ices.utexas.edu/coursewiki/images/f/f4/Multivar_normal.pdf MVN Exercise]
+
[http://wpressutexas.net/coursewiki/images/f/f4/Multivar_normal.pdf MVN Exercise]
  
 
[[Media:MultivarGaussExample.nb.txt|Bill's Mathematica notebook for problem 2 (above)]].  (Download file, rename as MultivarGaussExample.nb, then open in Mathematica.)
 
[[Media:MultivarGaussExample.nb.txt|Bill's Mathematica notebook for problem 2 (above)]].  (Download file, rename as MultivarGaussExample.nb, then open in Mathematica.)

Latest revision as of 14:34, 22 April 2016

Watch this segment

(Don't worry, what you see statically below is not the beginning of the segment. Press the play button to start at the beginning.)

{{#widget:Iframe |url=http://www.youtube.com/v/t7Z1a_BOkN4&hd=1 |width=800 |height=625 |border=0 }}

The direct YouTube link is http://youtu.be/t7Z1a_BOkN4

Links to the slides: PDF file or PowerPoint file

Problems

To Calculate

1. Calculate the Jacobian determinant of the transformation of variables defined by

2. Consider the 3-dimensional multivariate normal over with and

. (Note the matrix inverse notation.)

What are 2-dimensional and for

(a) the distribution on the slice ?

(b) the marginalization over ?

Hint: The answers are all simple rationals, but I had to use Mathematica to work them out.

To Think About

1. Prove the assertions in slide 5. That is, implement the ideas in the blue text.

2. How would you plot an error ellipsoid in 3 dimensions? That is, what would be the 3-dimensional version of the code in slide 8? (You can assume the plotting capabilities of your favorite programming language.)

Class Activity

Some 3x3 Matrices

MVN Exercise

Bill's Mathematica notebook for problem 2 (above). (Download file, rename as MultivarGaussExample.nb, then open in Mathematica.)