Difference between revisions of "Eleisha's Segment 48: Principal Component Analysis (PCA)"

From Computational Statistics Course Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
1. Although PCA doesn't require that the data be multivariate normal, it is most meaningful in that case, because the data is then completely defined by its principal components (i.e., covariance matrix) and means. Can you design a test statistic that measures "quality of approximation of a data set by a multivariate normal" in some quantitative way? Try to make your statistic approximately independent of <math>N</math>, the number of data points.
 
1. Although PCA doesn't require that the data be multivariate normal, it is most meaningful in that case, because the data is then completely defined by its principal components (i.e., covariance matrix) and means. Can you design a test statistic that measures "quality of approximation of a data set by a multivariate normal" in some quantitative way? Try to make your statistic approximately independent of <math>N</math>, the number of data points.
  
<b>Back To: >/b> [[Eleisha Jackson]]
+
<b>Back To: </b> [[Eleisha Jackson]]

Revision as of 10:12, 7 April 2014

To Compute:

1. Suppose that only one principal component is large (that is, there is a single dominant value s_i). In terms of the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf V } (and anything else relevant), what are the constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_j } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_j} that make a one-dimensional model of the data? This would be a model where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{ij} \approx a_j \lambda_i + b_j } with each of the data points (rows) having its own value of an independent variable Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_i} and each of the responses (columns) having it's own constants Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_j,b_j} .

2. The fileFile:Dataforpca.txt has 1000 data points (rows) each with 3 responses (columns). Make three scatter plots, each showing a pair of responses (in all 3 possible ways). Do the responses seem to be correlated?

3. Find the principal components of the data and make three new scatter plots, each showing a pair of principal coordinates of the data. What is the distribution (histogram) of the data along the largest principal component? What is a one-dimensional model of the data (as in problem 1 above)?

To Think About: 1. Although PCA doesn't require that the data be multivariate normal, it is most meaningful in that case, because the data is then completely defined by its principal components (i.e., covariance matrix) and means. Can you design a test statistic that measures "quality of approximation of a data set by a multivariate normal" in some quantitative way? Try to make your statistic approximately independent of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} , the number of data points.

Back To: Eleisha Jackson