Eleisha's Segment 19: The Chi-Square Statistic

From Computational Statistics Course Wiki
Revision as of 11:07, 3 April 2014 by Eleishaj (talk | contribs) (Created page with "<b> To Calculate </b> 1. Prove the assertion on lecture slide 5, namely that, for a multivariate normal distribution, the quantity <math> ({\mathbf x-\mathbf\mu})^T{\mathbf\S...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

To Calculate 1. Prove the assertion on lecture slide 5, namely that, for a multivariate normal distribution, the quantity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ({\mathbf x-\mathbf\mu})^T{\mathbf\Sigma}^{-1}({\mathbf x-\mathbf\mu}), } where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf x } is a random draw from the multivariate normal, is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2 } distributed.

To Think About

1. Why are we so interested in t-values? Why do we square them?

2. Suppose you measure a bunch of quantities Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i } , each of which is measured with a measurement accuracy Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i } and has a theoretically expected value Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_i } . Describe in detail how you might use a chi-square test statistic as a p-value test to see if your theory is viable? Should your test be 1 or 2 tailed?

Back To: Eleisha Jackson