# Difference between revisions of "Eleisha's Segment 10: The Central Limit Theorem"

Line 1: | Line 1: | ||

− | <b> To | + | <b>To Calculate: </b> |

1. Take 12 random values, each uniform between 0 and 1. Add them up and subtract 6. Prove that the result is close to a random value drawn from the Normal distribution with mean zero and standard deviation 1. | 1. Take 12 random values, each uniform between 0 and 1. Add them up and subtract 6. Prove that the result is close to a random value drawn from the Normal distribution with mean zero and standard deviation 1. | ||

Line 8: | Line 8: | ||

3. For what value(s) of <math>\nu</math> does the Student distribution (Segment 8, Slide 4) have a convergent 1st and 2nd moment, but divergent 3rd and higher moments? | 3. For what value(s) of <math>\nu</math> does the Student distribution (Segment 8, Slide 4) have a convergent 1st and 2nd moment, but divergent 3rd and higher moments? | ||

− | <b>To | + | <b> To Think About: </b> |

1. A distribution with moments as in problem 3 above has a well-defined mean and variance. Does the CLT hold for the sum of RVs from such a distribution? If not, what goes wrong in the proof? Is the mean of the sum equal to the sum of the individual means? What about the variance of the sum? What, qualitatively, does the distribution of the sum of a bunch of them look like? | 1. A distribution with moments as in problem 3 above has a well-defined mean and variance. Does the CLT hold for the sum of RVs from such a distribution? If not, what goes wrong in the proof? Is the mean of the sum equal to the sum of the individual means? What about the variance of the sum? What, qualitatively, does the distribution of the sum of a bunch of them look like? |

## Revision as of 10:46, 18 February 2014

**To Calculate: **

1. Take 12 random values, each uniform between 0 and 1. Add them up and subtract 6. Prove that the result is close to a random value drawn from the Normal distribution with mean zero and standard deviation 1.

2. Invent a family of functions, each different, that look like those in Slide 3: they all have value 1 at x = 0; they all have zero derivative at x = 0; and they generally (not necessarily monotonically) decrease to zero at large x. Now multiply 10 of them together and graph the result near the origin (i.e., reproduce what Slide 3 was sketching).

3. For what value(s) of **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu}**
does the Student distribution (Segment 8, Slide 4) have a convergent 1st and 2nd moment, but divergent 3rd and higher moments?

** To Think About: **

1. A distribution with moments as in problem 3 above has a well-defined mean and variance. Does the CLT hold for the sum of RVs from such a distribution? If not, what goes wrong in the proof? Is the mean of the sum equal to the sum of the individual means? What about the variance of the sum? What, qualitatively, does the distribution of the sum of a bunch of them look like?

2. Give an explanation of Bessel's correction in the last expression on slide 5. If, as we see, the MAP calculation gives the factor 1/N, why would one ever want to use 1/(N-1) instead? (There are various wiki and stackoverflow pages on this. See if they make sense to you!)

**Back To** Eleisha Jackson