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In a “constant rate Poisson process”, independent 
events occur with a constant probability per unit time 

In any small interval ∆t, the probability of an event is λ∆t 

In any finite interval Τ , the mean (expected) number of 
events is λΤ 
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What is the probability distribution of the waiting 
time to the 1st event, or between events? 

It’s the product of t/∆t “didn’t occur” probabilities, times 
one “did occur” probability. 

(random variable T1 with value t) 

Get it?  It’s the probability that 0 events 
occurred in a Poisson distribution with λt 
mean events up to time t, times the 
probability (density) of one event occurring 
at time t. 3 



Once we understand the relation to Poisson, we 
immediately know the waiting time to the kth event 

It’s the probability that k-1 events 
occurred in a Poisson distribution with λt 
mean events up to time t, times the 
probability (density) of one event 
occurring at time t. 

“Waiting time to the kth event 
in a Poisson process is Gamma 
distributed with degree k.” 

We could also prove this with characteristic 
functions (sum of k independent waiting times): 

kth power of above ! 4 



Same ideas go through for a  
“variable rate Poisson process” 

where 
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Waiting time to first event or between events: 

so basically the area Λ(t) replaces the area λt 



Thus, waiting time for the kth event 
in a variable rate Poisson process is… 

6 

Notice the λ(t) – not Λ(t) – in front.  So, in this form it is not Gamma distributed. 
We can recover the Gamma if we compute the probability density of Λ(t) 

1/λ(t) 

So the “area (mean events) up to the kth 
event” is Gamma distributed, 

How to simulate variable rate Poisson: 
Draw from Gamma(1,1) [or 
Exponential(1) which is the same thing] 
and then advance through that much 
area under λ(t).  That gives the next 
event. 



What does this have to do with 
 “order statistics”? 
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If N i.i.d. numbers are drawn from a univariate distribution, the kth 
order statistic is the probability distribution of the kth largest number. 

Near the ends, with               or                      , this is just like variable-rate Poisson.                 

How to simulate order statistics (approximation near extremes, large N): 
Draw from Exponential(1) and then advance through that much area under 
the distribution of expected number of events (total area N).  That gives the 
next event. 



Order statistics: the exact result 
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The previous approximation is just the approximation of Binomial by Poisson (for 
large N and small k).   

a moment of thought gives the exact result, 

binomial probability 
p for each event 
being in the tail 

number of 
events in the 
tail 

probability 
density of the 
event 

total number 
of events 

How to simulate order statistics (exact): 
Draw from Beta(1,N), giving a value between 0 and 1.  Multiply by N.   Advance 
through that much area under the distribution of expected number of events 
(total area N).  That gives the next event.  Decrement N by 1.  Repeat. 

Beta has the same relation to Binomial as 
Gamma (or Exponential) has to Poisson: 

Instead of what we had before,  
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