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Opinionated

in Statistics
by Bill Press

Lessons

#10  The Central Limit Theorem
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Can always subtract off the means, then add back later.
Then

Whoa! It better have a 
convergent Taylor series 
around zero! (Cauchy 
doesn’t, e.g.)

So, S is normally distributed

These terms decrease with N, but how fast?

pS(·) ∼ Normal(0, 1
N2

P
σ2i )

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution 
is uniquely important.  We need to understand where it does and doesn’t apply.
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Intuitively, the product of a lot of arbitrary functions that all start at 1 
and have zero derivative looks like this: 

1

Because the product falls off so fast, it loses all memory of the 
details of its factors except the starting value 1 and fact of zero 
derivative.  In characteristic function space that’s basically the CLT.
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NS =
P
Xi

Now, since

Var(NS) = N2Var(S)and

pS(·) ∼ Normal(0, 1
N2

P
σ2i )

pPXi(·) ∼ Normal(0,
P

σ2i )

If N is large enough, and if the higher moments are well-enough behaved, 
and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but 
convergence to Normal is slow and/or highly nonuniform.  (This can affect p-
values for tail tests, as we will soon see.)

it follows that the simple sum of a large number of 
r.v.’s is normally distributed, with variance equal to 
the sum of the variances:

CLT is usually stated about the sum of RVs, not the average, so
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The posterior estimate is:
uniform

P (μ,σ|x) ∝ 1√
2πσN

e−
1
2σ2

P
i(xi−μ)2 × P (μ,σ)

Since Gaussians are so universal, let’s learn estimate the parameters 
and  of a Gaussian from a set of points drawn from it:

For now, we’ll just find the maximum of the posterior distribution of (), 
given some data, for a uniform prior.  This is called “maximum a posteriori 
(MAP)” by Bayesians, and “maximum likelihood (MLE)” by frequentists.

xi, i = 1, . . . , NThe data is:

The statistical model is: P (x|μ,σ) =
Y
i

1√
2πσ

e−
1
2
(xi−μ)2

σ2

Now find the MAP (MLE):

Ha! The MAP mean is the sample 
mean, the MAP variance is the 
sample variance!
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Bessel’s 
Correction:



Professor William H. Press, Department of Computer Science, the University of Texas at Austin 6

It won’t surprise you that I did the algebra by computer, in Mathematica:


