
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 9



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

The mean and covariance of r.v.’s from this distribution are*

Multivariate Normal Distributions

Generalizes Normal (Gaussian) to M-dimensions
Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix

In the one-dimensional case  is the standard deviation, 
which can be visualized as “error bars” around the mean.

In more than one dimension  can be visualized as 
an error ellipsoid around the mean in a similar way.

*really?

1 = (x− μ)TΣ−1(x− μ)

N(x|μ,Σ) = 1

(2π)M/2 det(Σ)1/2
exp[−12(x− μ)TΣ

−1(x− μ)]

μ = hxi Σ =
­
(x− μ)(x− μ)T

®
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But back to “really?” The mean follows from the symmetry argument

Because mean and covariance are easy to estimate from a data set, it is easy 
– perhaps too easy – to fit a multivariate normal distribution to data.

I.e., estimate by sample averages.

μ = hxi ≈ 1

N

X
i

xi Σ =
­
(x− μ)(x− μ)T

®
≈ 1

N

X
i

(xi − μ)(xi − μ)T

It’s not obvious that the covariance in fact obtains from the definition of the 
multivariate Normal.  One has to do the multidimensional (and tensor) 
integral:

M2 =

Z
· · ·
Z
(x−μ)(x−μ)T 1

(2π)M/2 det(Σ)1/2
exp[−1

2
(x−μ)TΣ−1(x−μ)] dMx

0 =

Z
· · ·
Z
(x−μ) 1

(2π)M/2 det(Σ)1/2
exp[−1

2
(x−μ)TΣ−1(x−μ)] dMx
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(I don’t know an elementary proof, i.e., without some 
matrix decomposition.  Can you find one?)

The only way I know how to do this integral is by trickery involving the 
Cholesky decomposition (“square root of a positive definite matrix”):

Jacobian determinant.  The transformation 
law for multivariate probability distributions.

This is the distribution of N independent 
univariate Normals N(0,1)!

Ha!

we’re setting  to 0 for 
convenience

p(y) = p(x)

¯̄̄̄
∂x

∂y

¯̄̄̄
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Reduced dimension properties of multivariate normal

1.  Any slice through a m.v.n. is a m.v.n (“constraint” or “conditioning”)

2. Any projection of a m.v.n. is a m.v.n (“marginalization”)

You can prove both assertions by “completing 
the square” in the exponential, producing an 
exponential in (only) the reduced dimension 
times an exponential in (only) the lost 
dimensions.  Then the second exponential is 
either constant (slice case) or can be 
integrated over (projection case).

N(x|μ,Σ) = 1

(2π)M/2 det(Σ)1/2
exp[−12(x− μ)TΣ

−1(x− μ)]
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How to generate multivariate normal deviates N():

Cholesky:

y = {yi} ∼ N(0, 1)Fill y with independent Normals:

Transform:

Proof: ­
(x− μ)(x− μ)T

®
=
­
(Ly)(Ly)T

®
=
­
L(yyT )LT

®
= L
­
yyT

®
LT

= LLT = Σ

­
yyT

®
= 1

x = Ly + μ

Σ = LLT

That’s it!  x is the desired m.v.n.

Even easier:  MATLAB has a built-in function mvnrnd(MU,SIGMA).
But be sure you get a bunch of m.v.n.’s all in one call, because it 
(probably) re-does the Cholesky decomposition on each call!

Notice that the proof never used Normality.  You can fill y with anything with 
zero mean and variance one, and you’ll reproduce .  But the result won’t be 
Normal!
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mu = mean([len1 len2])
sig = cov(len1,len2)
mu =

3.2844
3.2483

sig =
0.6125    0.2476
0.2476    0.5458

rsamp = mvnrnd(mu,sig,1000);

So, easy operations are:

1. Fitting a multivariate normal to a set of points (just compute the sample 
mean and covariance!)

2. Sampling from the fitted m.v.n.

Example:

In MATLAB, for 
example, these are 
one-line operations.
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A related, useful, Cholesky trick is to draw error ellipses (ellipsoids, …)

So, locus of points at 1 standard deviation is

So, if z is on the unit circle (sphere, …) then

function [x y] = errorellipse(mu,sigma,stdev,n)
L = chol(sigma,'lower');
circle = 
[cos(2*pi*(0:n)/n); sin(2*pi*(0:n)/n)].*stdev;

ellipse = L*circle + repmat(mu,[1,n+1]);
x = ellipse(1,:);
y = ellipse(2,:);

Σ = LLT

1 = (x− μ)TΣ−1(x− μ) ⇒
¯̄
L−1(x− μ)

¯̄
= 1

x = Lz+ μ

will be on the error ellipse.

my coding of this idea looks like this
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The distribution we have been looking at has some interesting biology in it!

file genestats.dat (on course web site) contains 20694 lines like this:

ENST00000341866    17470     3262 0.00002 4 1290 349 1412 211 169 678 13361 
ENST00000314348    22078     1834 0.00001 7 100 166 113 178 165 262 850 5475 
385 3273 1149 2070 7892 
ENST00000313081    13858     1160 0.00001 6 496 150 107 85 151 171 2068 76 2063 
674 7817 
ENST00000298622    80000     6487 0.00001 24 135 498 216 120 147 132 36 60 129 
129 84 63 99 99 54 66 69 78 204 66 73 1081 397 2452 12133 15737 1513 769 942 
103 829 2272 1340 3058 327 2371 1361 471 2922 735 85 9218 1257 2247 897 822 
12104 

gene name
total length

total length of exons

ignore for now

number of exons N
N exon lengths N-1 intron lengths

<EOL>
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notice the “hard edges”
this is biology!

This is kind of fun, because it’s not just the usual featureless scatter plot

Is there a significant correlation here?  If the first intron is long, does the second one 
also tend to be?  Or is our eye being fooled by the non-Gaussian shape?

Log10 of size of 1st and 2nd introns for 1000 genes:
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log10(first intron length)


