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For an example in which we might use a more 
sophisticated prior, suppose the data is 10 heads in a row.

“Hmm.  When people make me watch them flip coins, 95% of the 
time it’s a (nearly) fair coin [A], 4% of the time it’s a double-headed 
[B] or double-tailed coin [C], and 1% of the time something else 
weird is happening [D].”

Case A: 0.95× (0.5)10 = 0.00093 0.043
Case B 0.02× 110 = 0.02 0.915
Case C 0.02× 010 = 0 0.000

Case D 0.01×
R 1
0
p10dp = 0.00091 0.042

This kind of analysis can be dignified by the term “meta-analysis” if you 
can justify your choice of priors on the basis of already published data.  
(Somewhat more rigorously than the above.) However, it is also a good 
way to live your life, especially if you are a person who likes to make bets!
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you should go learn about Likelihood Ratio tests, but I personally think 
that Bayes odds ratio is easier to compute and easier to interpret 

(Can you remember that we were listing three Bayesian 
criticisms of tail tests?)

(2)  Not suitable for comparing hypotheses quantitatively.  
Best you can do is rule one out, leaving the other viable.  
Ratio of p-values is not anything meaningful!

(3) The sanctification of certain p-values (e.g., the magic 
p=0.05 value) is naïve and misleading.

(on the one hand) 1 in 20 results are wrong!  Imagine 
if we built nuclear power plants to this low a standard.

(on the other hand) the large majority of results with p=0.10 
are in fact correct.  These could sometimes be acted on.
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Fisher studied with Gossert (Student) as a young man.  
Gossert never approved of the p=0.05 rule, and understood 
as the Master Brewer that no single p-value was suitable for 
optimizing economic return: it depends on the relative costs 
of success and failure (origins of decision theory).

There is a fun article on this posted in the course forum: 

Slavish adherence to p=0.05 is largely due to 
the young Fisher (who became arguably the 
greatest statistician to ever have lived).

Ronald Aylmer Fisher (1890-1962)
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Now that we’re so adept at p-value stuff, let’s go back to the Towne family.

We used these data points to 
estimate of the parameter r

Are T2 and T11 
descendents or were 
there “non-paternal 
events”?

And T13?
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If we really knew r, then a p-value (tail) test on T2, T11, and T13 would be 
straightforward,

The problem is we have only Bayesian (uncertain) knowledge about r

A common frequentist practice is to use the maximum likelihood estimate of r.  
This is just wrong (except asymptotically if the distribution of r were very 
narrow) because T11’s extreme tail probabilities will be dominated by the 
extreme (but possible) values of r.

P (r|data) = bin(0, 3× 37, r) bin(0, 3× 37, r) bin(1, 5× 37, r) bin(0, 5× 37, r)
× bin(0, 6× 37, r) bin(1, 11× 37, r) bin(3, 10× 37, r)/r

ptail,11 =
37X
k=5

bin(k, 9× 37, r)
notice how the “neglect 
backmutation” assumption 
makes this slightly dodgy



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 7

One “modern” way to proceed is to integrate the p-value over the posterior probability of all 
estimated quantities.  This is called the “posterior predictive p-value” and is an example 
of a set of methods loosely called “empirical Bayes”.

t11tail =
0.0104

t2tail =
1.0036e-013

t5tail =
0.1288

t13tail =
0.0013

So the three questionables are all 
unlikely to be descendents.
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ptail,11 =

Z ∞
0

37X
k=5

bin(k, 9× 37, r)P (r|data)dr
ÁZ ∞

0

P (r|data)dr
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This would be a satisfactory end to the Towne story, except that we tainted the data 
by tail trimming.  While T2 is hopeless, what if we had included T11 and T13?

P (r|data) ∝ Pprevious(r|data)× bin(5, 9× 37, r) bin(4, 10× 12, r)

the extra data drags up the 
distribution for r

t11tail =
0.0953

t2tail =
3.2348e-011

t13tail =
0.0122

This is an actual methodological problem with “posterior predictive p-value”.  Data is being 
used twice: once to get the posterior, then again to test itself.  Often you can get away with 
this (e.g., try posterior both with and without questionable data).  But in this example T11 is 
left ambiguous.

This is when we need real (We’ll return to the Towne family one more time, later.)

So suddenly there is hope for T11.
T2 and T13 still strongly ruled out.
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The “Bonferroni correction” is widely used.

It is very conservative, hence usually not
the most powerful test.

α = 1− (1− α0)N ≈ Nα0

This assumes that the N tests are all independent.  That’s rarely true.

Carlo Emilio Bonferroni
(1892 – 1960)

 = prob. that one or more of N tests will accidentally fall in their critical regions ’

α = α0

The truth is always somewhere in-between.

Slavish adherence to Bonferroni is a curse on biomedical research, but it is 
better than the alternative of having a literature full of wrong results!

For large-scale screens can use False Discovery Rate (FDR) instead.  

The opposite limit would be to repeat the same test N times on the same data 
(N non-communicating graduate students open the same statistics book).

Let’s talk about multiple hypothesis testing.
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False Discovery Rate (Benjamini & Hochberg)
This is often a good alternative to Bonferroni, when the latter is too 
conservative.

• You have a lot of p-values
– e.g., one per drug for 1000 drugs
– or, one per gene for 10000 genes

• They are not uniform
– there is an excess at small values
– so some must be “causal”

• How do you set p to control , the fraction of discovery calls 
that are false?
– say,  = 5%
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OK, enough p-values for now.

idealized version:

Prescription: call as discoveries all 

Proof:

αx0 =
x0 − f
1− f ⇒ x0 =

f

1− α(1− f)

⇒ FDR =
x0 − f
x0

= α(1− f) < α

(There are fancier proofs for the nonidealized version.)

pk <
k
Mα
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Keep in mind that we are still “closet Bayesians”, however…

Bayesians have much less difficulty with multiple hypotheses in the happy 
case that they are EME.

Example:  We have a model where one, or a combination of, single 
nucleotide polymorphisms (SNPs) causes a particular kind of cancer.

We genotype patients and controls for N SNPs, each with 2 alleles.

So there are 2N measurable hypotheses, and under each we can 
compute P (data|Hi)

We are saved by the prior
which must have

P (Hi)P
P (Hi) = 1

Quite typically, our prior for models with “one 
main factor” (here, one SNP) will be larger than 
with “two main factors” (2 SNPs) and so on.

Now, do the “Bayes thing” and see if the 
evidence factor increases any individual 
model to high posterior probability.

Look, Ma, no multiple hypothesis correction!

p-value with Bonferroni
would make a 
statistically significant 
finding impossible!
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(Let me explain where we’re going here…)

• Building up prerequisites to do a fairly sophisticated treatment of 
model fitting
– Bayes parameter estimation
– p-value tail tests
– really understand multivariate normal and covariance
– really understand chi-square

• Then, we get to appreciate the actual model fitting stuff
– fitted parameters
– their uncertainty expressed in several different ways
– goodness-of-fit

• And it will in turn be a nice “platform” for learning some other things
– bootstrap resampling


