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The characteristic function of a distribution is its 
Fourier transform.

(Statisticians often use notational convention that X is a random 
variable, x its value, pX(x) its distribution.)

So, the coefficients of the Taylor series expansion of the 
characteristic function are the (uncentered) moments.

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution 
is uniquely important.  We need to understand where it does and doesn’t apply.

φX(t) ≡
Z ∞
−∞

eitxpX(x)dx

φX(0) = 1

φ0X(0) =
Z
ixpX(x)dx = i hXi

−φ00X(0) =
Z
x2pX(x)dx = Var(X) + hXi2
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let S = X + Y

pS(s) =

Z
pX(u)pY (s− u)du

φS(t) = φX(t)φY (t)

Last line follows immediately from the Fourier 
convolution theorem.  (In fact, it is the Fourier 
convolution theorem!)

“The c.f. of the sum of independent r.v.’s
is the product of their individual c.f.’s”
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φX(t) ≡
Z ∞
−∞

eitxpX(x)dx

Proof:

Fourier transform pair
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φaX(t) =

Z
eitxpaX(x)dx

=

Z
eitx

1

a
pX

³x
a

´
dx

=

Z
ei(at)(x/a)pX

³x
a

´ dx
a

= φX(at)

Scaling law for characteristic functions:

Scaling law for r.v.’s:
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What’s the characteristic function of a Gaussian?

Tell Mathematica that sig is positive.  
Otherwise it gives “cases” when taking 
the square root of sig^2

syms x mu pi t sigma
p = exp(-(x-mu)^2 / (2*sigma^2)) / (sqrt(2*pi)*sigma)
p =
1/2*exp(-1/2*(x-mu)^2/sigma^2)*2^(1/2)/pi^(1/2)/sigma
norm = int(p,x,-Inf,Inf)
norm =
1
cf = simplify(int(p*exp(i*t*x),x,-Inf,Inf))
cf =
exp(1/2*i*t*(2*mu+i*t*sigma^2))

φNormal(t) = e
iμt− 12σ

2t2

So the CF of a Gaussian 
is itself a Gaussian:
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Cauchy distribution has ill-defined mean and infinite variance, but it has a 
perfectly good characteristic function:

Matlab and Mathematica both (sadly) fail at computing the 
characteristic function of the Cauchy distribution, but you 
can use old-fashioned wetware methods* (see proof posted 
on forum) and get:

φCauchy(t) = e
iμt−σ|t|

note non-analytic at t=0

*Or social networking!  My co-author Saul says: “If t>0, close the contour in the upper 1/2-plane with a 
big semi-circle, which adds nothing. So the integral is just the residue at the pole (x-)/=i, which gives 
exp(-t). Similarly, close the contour in the lower 1/2-plane for t<0, giving exp(t). So answer is exp(-
|t|).  The factor exp(it) comes from the change of x variable to x-.”

Recall:
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Central Limit Theorem

S = 1
N

P
Xi =

P Xi
N with hXii ≡ 0

φS(t) =
Y
i

φXi/N (t) =
Y
i

φXi

µ
t

N

¶
=
Y
i

µ
1− 1

2σ
2
i

t2

N2
+ · · ·

¶

= exp

"X
i

ln

µ
1− 1

2σ
2
i

t2

N2
+ · · ·

¶#

≈ exp
"
−1
2

Ã
1

N2

X
i

σ2i

!
t2 + · · ·

#

Let

Can always subtract off the means, then add back later.

Then

Whoa! It better have a 
convergent Taylor series 
around zero! (Cauchy 
doesn’t, e.g.)

So, S is normally distributed

These terms decrease with N, but how fast?

pS(·) ∼ Normal(0, 1
N2

P
σ2i )
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Intuitively, the product of a lot of arbitrary functions that all start at 1 
and have zero derivative looks like this: 

1

Because the product falls off so fast, it loses all memory of the 
details of its factors except the starting value 1 and fact of zero 
derivative.  In characteristic function space that’s basically the CLT.
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NS =
P
Xi

Now, since

Var(NS) = N2Var(S)and

pS(·) ∼ Normal(0, 1
N2

P
σ2i )

pPXi(·) ∼ Normal(0,
P

σ2i )

If N is large enough, and if the higher moments are well-enough behaved, 
and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but 
convergence to Normal is slow and/or highly nonuniform.  (This can affect p-
values for tail tests, as we will soon see.)

it follows that the simple sum of a large number of 
r.v.’s is normally distributed, with variance equal to 
the sum of the variances:

CLT is usually stated about the sum of RVs, not the average, so
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The posterior estimate is:
uniform

P (μ,σ|x) ∝ 1√
2πσN

e−
1
2σ2

P
i(xi−μ)2 × P (μ,σ)

Since Gaussians are so universal, let’s learn estimate the parameters 
and  of a Gaussian from a set of points drawn from it:

For now, we’ll just find the maximum of the posterior distribution of (), 
given some data, for a uniform prior.  This is called “maximum a posteriori 
(MAP)” by Bayesians, and “maximum likelihood (MLE)” by frequentists.

xi, i = 1, . . . , NThe data is:

The statistical model is: P (x|μ,σ) =
Y
i

1√
2πσ

e−
1
2
(xi−μ)2

σ2

Now find the MAP (MLE):

Ha! The MAP mean is the sample 
mean, the MAP variance is the 
sample variance!

0 =
∂P

∂μ
=
P

σ2
(
X
i

xi −Nμ) ⇒ μ =
1

N

X
i

xi

0 =
∂P

∂σ
=
P

σ3
[−Nσ2 +

X
i

(xi − μ)2] ⇒ σ2 =
1

N

X
i

(xi − μ)2
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It won’t surprise you that I did the algebra by computer, in Mathematica:

(I don’t know if MATLAB can deal with symbolic sums.  Could someone find out?)


