CS395T Computational Statistics with Application to Bioinformatics

Prof. William H. Press Spring Term, 2011 The University of Texas at Austin

Lecture 5

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution is uniquely important. We need to understand where it does <u>and doesn't</u> apply.

The characteristic function of a distribution is its Fourier transform.

$$\phi_X(t) \equiv \int_{-\infty}^{\infty} e^{itx} p_X(x) dx$$

(Statisticians often use notational convention that X is a random variable, x its value, $p_X(x)$ its distribution.)

$$\phi_X(0) = 1$$

$$\phi'_X(0) = \int ix p_X(x) dx = i \langle X \rangle$$

$$-\phi''_X(0) = \int x^2 p_X(x) dx = \operatorname{Var}(X) + \langle X \rangle^2$$

So, the coefficients of the Taylor series expansion of the characteristic function are the (uncentered) moments.

"The c.f. of the sum of independent r.v.'s is the product of their individual c.f.'s"

let
$$S = X + Y$$

 $p_S(s) = \int p_X(u)p_Y(s-u)du$
 $\phi_S(t) = \phi_X(t)\phi_Y(t)$

Last line follows immediately from the Fourier convolution theorem. (In fact, it is the Fourier convolution theorem!)

Proof:

$$\phi_X(t) \equiv \int_{-\infty}^{\infty} e^{itx} p_X(x) dx$$
$$p_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_X(t) e^{-itx} dt$$

Fourier transform pair

$$p_{S}(s) = \int_{-\infty}^{\infty} p_{X}(u) p_{Y}(s-u) du$$

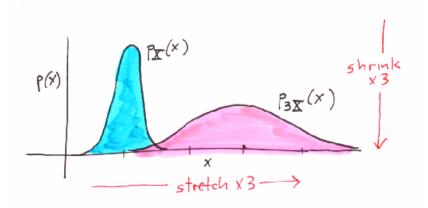
=
$$\int_{-\infty}^{\infty} p_{X}(u) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{Y}(t) e^{-it(s-u)} dt \right] du$$

=
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{Y}(t) e^{-its} \left[\int_{-\infty}^{\infty} p_{X}(u) e^{itu} du \right] dt$$

=
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_{Y}(t) \phi_{X}(t) e^{-its} dt$$

So, $\phi_S(t) = \phi_Y(t)\phi_X(t)$

Scaling law for r.v.'s:



Scaling law for characteristic functions:

$$\phi_{aX}(t) = \int e^{itx} \underline{p_{aX}(x)} dx$$
$$= \int e^{itx} \frac{1}{a} p_X\left(\frac{x}{a}\right) dx$$
$$= \int e^{i(at)(x/a)} p_X\left(\frac{x}{a}\right) \frac{dx}{a}$$
$$= \phi_X(at)$$

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press

What's the characteristic function of a Gaussian?

syms x mu pi t sigma
p = exp(-(x-mu)^2 / (2*sigma^2)) / (sqrt(2*pi)*sigma)
p =
1/2*exp(-1/2*(x-mu)^2/sigma^2)*2^(1/2)/pi^(1/2)/sigma
norm = int(p, x, -Inf, Inf)
norm =
1
cf = simplify(int(p*exp(i*t*x), x, -Inf, Inf))
cf =
exp(1/2*i*t*(2*mu+i*t*sigma^2))
[n[14]= \$Assumptions = \$Assumptions && (sig > 0)
[n[16]=

$$p = (1/(Sqrt[2Pi]sig)) Exp[-(1/2) ((x-mu)/sig)^2]$$

[16]=
 $\frac{e^{-\frac{(-mu+x)^2}{2xig^2}}}{\sqrt{2\pi sig}}$
[16]=
1
[17]= Integrate[p, {x, -Infinity, Infinity}]
[17]= Integrate[p Exp[Itx], {x, -Infinity, Infinity}]

Out[17]=

Out[16]=

Out[15]=

 $e^{i \operatorname{mut} - \frac{\operatorname{sig}^2 t^2}{2}}$

Cauchy distribution has ill-defined mean and infinite variance, but it has a perfectly good characteristic function:

Recall:

$$x \sim \operatorname{Cauchy}(\mu, \sigma), \quad \sigma > 0$$

$$p(x) = \frac{1}{\pi\sigma} \left(1 + \left[\frac{x - \mu}{\sigma} \right]^2 \right)^{-1}$$

Matlab and Mathematica both (sadly) fail at computing the characteristic function of the Cauchy distribution, but you can use old-fashioned wetware methods* (see proof posted on forum) and get:

$$\phi_{\text{Cauchy}}(t) = e^{i\mu t - \sigma|t|}$$

*Or social networking! My co-author Saul says: "If t>0, close the contour in the upper 1/2-plane with a big semi-circle, which adds nothing. So the integral is just the residue at the pole $(x-\mu)/\sigma=i$, which gives exp(- σ t). Similarly, close the contour in the lower 1/2-plane for t<0, giving exp(σ t). So answer is exp(- $|\sigma$ t|). The factor exp(iµt) comes from the change of x variable to x-µ."

Central Limit Theorem

Let
$$S = \frac{1}{N} \sum X_i = \sum \frac{X_i}{N}$$
 with $\langle X_i \rangle \equiv 0$

Can always subtract off the means, then add back later.

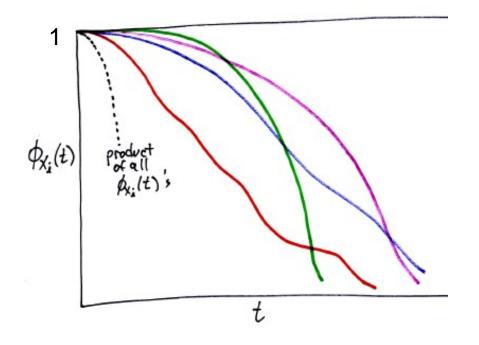
Then

$$\begin{split} \phi_{S}(t) &= \prod_{i} \phi_{X_{i}/N}(t) = \prod_{i} \phi_{X_{i}} \left(\frac{t}{N}\right) \\ &= \prod_{i} \left(1 - \frac{1}{2}\sigma_{i}^{2}\frac{t^{2}}{N^{2}} + \cdots\right) \begin{array}{c} \text{Whoal It better have a convergent Taylor series around zero! (Cauchy doesn't, e.g.)} \\ &= \exp\left[\sum_{i} \ln\left(1 - \frac{1}{2}\sigma_{i}^{2}\frac{t^{2}}{N^{2}} + \cdots\right)\right] \\ &= \exp\left[-\frac{1}{2}\left(\frac{1}{N^{2}}\sum_{i}\sigma_{i}^{2}\right)t^{2} + \cdots\right] \end{split}$$

So, S is normally distributed

$$p_S(\cdot) \sim \text{Normal}(0, \frac{1}{N^2} \sum \sigma_i^2)$$

Intuitively, the product of a lot of arbitrary functions that all start at 1 and have zero derivative looks like this:



Because the product falls off so fast, it loses all memory of the details of its factors except the starting value 1 and fact of zero derivative. In characteristic function space that's basically the CLT.

CLT is usually stated about the sum of RVs, not the average, so

$$p_S(\cdot) \sim \operatorname{Normal}(0, \frac{1}{N^2} \sum \sigma_i^2)$$

Now, since

$$NS = \sum X_i$$
 and $Var(NS) = N^2 Var(S)$

it follows that the simple sum of a large number of r.v.'s is normally distributed, with variance equal to the sum of the variances:

$$p_{\sum X_i}(\cdot) \sim \operatorname{Normal}(0, \sum \sigma_i^2)$$

If N is large enough, and if the higher moments are well-enough behaved, and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but convergence to Normal is slow and/or highly nonuniform. (This can affect p-values for tail tests, as we will soon see.)

Since Gaussians are so universal, let's learn estimate the parameters μ and σ of a Gaussian from a set of points drawn from it:

For now, we'll just find the maximum of the posterior distribution of (μ, σ) , given some data, for a uniform prior. This is called "maximum a posteriori (MAP)" by Bayesians, and "maximum likelihood (MLE)" by frequentists.

The data is: $x_i, i = 1, \ldots, N$ The statistical model is: $P(\mathbf{x}|\mu,\sigma) = \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x_i-\mu)^2}{\sigma^2}}$ The posterior estimate is: $P(\mu, \sigma | \mathbf{x}) \propto \frac{1}{\sqrt{2\pi\sigma^N}} e^{-\frac{1}{2\sigma^2}\sum_i (x_i - \mu)^2} \times P(\mu, \sigma)^{\text{uniform}}$

Now find the MAP (MLE):

$$0 = \frac{\partial P}{\partial \mu} = \frac{P}{\sigma^2} (\sum_i x_i - N\mu) \Rightarrow \mu = \frac{1}{N} \sum_i x_i \qquad \begin{array}{l} \text{Ha! The MAP mean is the sample} \\ \text{mean, the MAP variance is the sample variance!} \\ 0 = \frac{\partial P}{\partial \sigma} = \frac{P}{\sigma^3} [-N\sigma^2 + \sum_i (x_i - \mu)^2] \Rightarrow \sigma^2 = \frac{1}{N} \sum_i (x_i - \mu)^2 \end{array}$$

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press

the

It won't surprise you that I did the algebra by computer, in Mathematica:

$$p = (1 / s^{N})$$

$$Exp[-(1 / (2 s^{2})) Sum[(x[i] - mu)^{2}, \{i, 1, N\}]]$$

$$e^{-\frac{\sum_{i=1}^{N} (-mu + x[i])^{2}}{2 s^{2}}} s^{-N}$$
Simplify[D[p, mu]]
$$-\frac{1}{2} e^{-\frac{\sum_{i=1}^{N} (-mu + x[i])^{2}}{2 s^{2}}} s^{-2-N} \sum_{i=1}^{N} -2 (-mu + x[i])$$
Simplify[D[p, s]]
$$e^{-\frac{\sum_{i=1}^{N} (-mu + x[i])^{2}}{2 s^{2}}} s^{-3-N} \left(-N s^{2} + \sum_{i=1}^{N} (-mu + x[i])^{2}\right)$$

(I don't know if MATLAB can deal with symbolic sums. Could someone find out?)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press