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A small cloud: The way we “trimmed” the data mattered. (And should trouble us a 
bit!)  Here’s the effect of including T11 and T13, both of which seemed to be outliers:

now include these

Editing outliers is a tricky issue 
that we will return to when we 
learn about mixture models.

P (data|r) = [old model]× bin(5, 9× 37, r) bin(4, 10× 12, r)
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We are often interested in distributions that have some kind of 
localization (because why would we be interested if they didn’t?)

Suppose we want to summarize p(x) by a single number 
a, its “value”.  Let’s find the value a that minimizes the 
mean-square discrepancy of the “typical” value x:

We already saw the beta distribution with ,  > 0 as an example 
on the interval [0,1], and the Towne family example (not any simple 
function).  We’ll see more examples soon.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

This is the variance Var(x), 
but all we care about here is 
that it doesn’t depend on a.

The minimum is obviously a = hxi. (Take derivative
wrt a and set to zero if you like mechanical calcula-
tions.)

minimize: ∆2 ≡
­
(x− a)2

®
=
­
x2 − 2ax+ a2

®
= (
­
x2
®
− hxi2) + (hxi− a)2

(in physics this is called the “parallel axis theorem”)

hanythingi ≡
R
x
(anything) p(x)dx

Recall expectation notation:

i.e., the weighted average of “anything”, weighted by the probable values of x.  
Expectation is linear over “anything” (sums, constants times, etc.).
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Why mean-square?  Why not mean-absolute?  Try it!

∆ = h|x− a|i =
Z ∞
−∞

|x− a| p(x)dx

=

Z a

−∞
(a− x) p(x)dx+

Z ∞
a

(x− a) p(x)dx

So,

0 =
d∆

da
=

Z a

−∞
p(x)dx+ 0−

Z ∞
a

p(x)dx+ 0

⇒Z a

−∞
p(x)dx =

Z ∞
a

p(x)dx = 1
2

⇒ a is the median value

Integrand at a

Mean and median are both “measures of central tendency”.
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Higher moments, centered moments are conventionally defined by

μi ≡
­
xi
®
=
R
xi p(x)dx

Mi ≡
­
(x− hxi)i

®
=
R
(x− hxi)i p(x)dx

But generally wise to be cautious about using high moments.
Otherwise perfectly good distributions don’t have them at all 
(divergent).  And (related) it can take a lot of data to measure 
them accurately. 

Third and fourth moments also have “names”

The centered second moment  M2 , the variance, is by far 
most useful
M2 ≡ Var(x) ≡

­
(x− hxi)2

®
=
­
x2
®
− hxi2

σ(x) ≡
p
Var(x) “standard deviation” summarizes a distribution’s half-width 

(r.m.s. deviation from the mean)
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Certain combinations of higher moments are also additive.  These
are called semi-invariants or cumulants.  

Mean and variance are additive over independent random variables:

note “bar” notation, equivalent to < >

Skew and kurtosis are dimensionless combinations of semi-invariants

A Gaussian has all of its semi-invariants higher than I2 equal to zero.
A Poisson distribution has all of its semi-invariants equal to its mean.

How to derive these?  If you are a little bit sophisticated about probability (from a 
previous course?) look at Wikipedia “Cumulant”.  It’s very cool!
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Let us review some standard (i.e., frequently occurring) distributions:

The “bell shaped” ones differ qualitatively by their tail behaviors:
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Normal (Gaussian) has the fastest falling tails:

Cauchy (aka Lorentzian) has the slowest falling tails:

Cauchy has area=1 (zeroth moment), but no defined mean or 
variance (1st and 2nd moments divergent).
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Student has power-law tails:

“bell shaped” but you get to specify the power with 
which the tails fall off.  Normal and Cauchy are 
limiting cases.  (Also occurs in some statistical tests.)

we’ll see uses for “heavy-tailed” distributions later

note that  is not (quite) the standard deviation:

“Student” was actually William Sealy Gosset (1876-1937), who spent his 
entire career at the Guinness brewery in Dublin, where he rose to become 
the company’s Master Brewer.  Brewing was one of the first “exact” modern 
manufacturing processes. More on Student later…
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Another class of distributions model positive quantities:

Exponential:
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Lognormal:

Mathematica (and also 
MATLAB) can do these 
integrals, no problem!
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Gamma distribution:

• Gamma and Lognormal are both commonly used as convenient 2-
parameter fitting functions for “peak with tail” positive distributions.

• Both have parameters for peak location and width.
• Neither has a separate parameter for how the tail decays.

– Gamma: exponential decay
– Lognormal: long-tailed (exponential of square of log)
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Chi-square distribution (we’ll use this a lot!)

Has only one parameter that determines both peak location and width.
 is often an integer, called “number of degrees of freedom” or “DF”

the independent variable is 2, not 

It’s actually just a special case of Gamma, namely Gamma(/2,1/2)
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NR3 has classes for many common distributions, with algorithms for p, cdf, and inverse cdf. 

Matlab and Mathematica both have many distributions, e.g.,

chi2pdf(x,v)
chi2cdf(x,v)
chi2inv(p,v)

• PDF p(x)
• CDF P(x)
• Inverse of CDF x(P)
• Random deviates drawn from it (we’ll get to soon)

Computationally, one wants efficient methods for all of:

P (x) ≡
R x
−∞ p(x

0)dx0


