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Review where we are:
We are trying to estimate a parameter

x = P (SB |BC), (0 ≤ x ≤ 1)
The form of our estimate is a (Bayesian) probability distribution
(of the parameter, itself here just happening to be a probability)

This is a sterile exercise if it is just a debate about priors.
What we need is data! Data might be a previous history 
of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

N = 35, NB = 15, NC = 20

We hypothesize (might later try to check) that these are i.i.d. “Bernoulli 
trials” and therefore informative about x

“independent and identically distributed”

As good Bayesians, we now need P (data|x)

P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

(What’s wrong with: x=15/35=0.43?  
Hold on…)



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

P (data|x)
means different things in frequentist vs. Bayesian contexts,
so this is a good time to understand the differences (we’ll use 
both ideas as appropriate)

Frequentist considers the universe of what might have been, imagining 
repeated trials, even if they weren’t actually tried, and needs no prior:

since i.i.d. only the N ’s can matter (a so-called “sufficient statistic”).

P (data|x) =
µ
N

NB

¶
xNB (1− x)NC

prob. of exact sequence seen

no. of equivalent arrangements

¡
n
k

¢
= n!

k!(n−k)!

Bayesian considers only the exact data seen, and has a prior:

P (x|data) ∝ xNB (1− x)NC p(x|I)

No binomial coefficient, both conceptually and also since independent of x 
and absorbed in the proportionality.  Use only the data you see, not 
“equivalent arrangements” that you didn’t see.  This issue is one we’ll 
return to, not always entirely sympathetically to Bayesians (e.g., 
goodness-of-fit).

but we might first suppose 
that  the prior it is uniform
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Z 1

0

P (x|data) =
Z 1

0

xNB (1− x)N−NBdx =
Γ(NB + 1)Γ(N −NB + 1)

Γ(N + 2)

so this is what 
the data tells us 
about p(x)

Plot of numerator over denominator for N=35, NB = 15:

Bayes numerator and denominator are:

P (x|data) ∝ xNB (1− x)N−NB × 1
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syms nn nb x
num = x^nb * (1-x)^(nn-nb)
num =
x^nb*(1-x)^(nn-nb)
denom = int(num, 0, 1)
denom =
gamma(nn-nb+1)*gamma(nb+1)/gamma(nn+2)
p = num / denom
p =
x^nb*(1-x)^(nn-nb)/gamma(nn-
nb+1)/gamma(nb+1)*gamma(nn+2)
ezplot(subs(p,[nn,nb],[35,15]),[0,1])

You should learn to do calculations like this in MATLAB or Mathematica: 

In[7]:= num  x^ nb 1  x^nn  nb

Out[7]= 1  xnbnn xnb

In[8]:= denom  Integratenum, x, 0, 1,
GenerateConditions  False

Out[8]=
Gamma1  nb Gamma1  nb  nn

Gamma2  nn

In[9]:= px_  num denom

Out[9]=
1  xnbnn xnb Gamma2  nn

Gamma1  nb Gamma1  nb  nn

In[12]:= Plotpx . nn  35, nb  15, x, 0, 1,
PlotRange  All, Frame  True
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Out[12]= Graphics
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Var(x) =

x2
®
− hxi2 =

Z 1

0

x2P (x|data)dx− hxi2 = (NB + 1)(N −NB + 1)
(N + 2)2(N + 3)

dP (x|data)
dx

= 0 ⇒ x =
NB
N

hxi =
Z 1

0

xP (x|data)dx = NB + 1

N + 2

Find the mean, standard error, and mode of our estimate for x

“maximum likelihood” (ML) answer is to 
estimate x as exactly the fraction seen

mean is the 1st moment
notice it’s different from ML!

variance involves the 2nd moment,

This shows how p(x) gets narrower as the amount of data increases.

P (x|data) ∝ xNB (1− x)N−NB
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(Let’s leave behind the metaphor of the Jailer and Prisoner A.)

What we are illustrating is called Bernoulli trials:

• two possible outcomes
• i.i.d. events
• a single parameter x (the probability of one outcome)
• a sufficient statistic is the pair of numbers N and NB

Jacob and Johann Bernoulli

Z 1

0

P (x|data) =
Z 1

0

xNB (1− x)N−NBdx =
Γ(NB + 1)Γ(N −NB + 1)

Γ(N + 2)

for uniform prior, the Bayes denominator is, as we’ve seen, easy to calculate:

P (data|x) = xNB (1− x)N−NB

P (x|data) ∝ xNB (1− x)N−NB × P (x|I)

(in the Bayesian sense)
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Are there any other mathematical forms for the prior that would still 
leave the Bayes denominator easy to calculate?

Z 1

0

P (x|data) =
Z 1

0

xNB+β(1− x)N−NB+αdx

=
Γ(NB + β + 1)Γ(N −NB + α+ 1)

Γ(N + α+ β + 2)

P (x|I) ∝ xβ(1− x)α
Yes! try

P (x|data) = xNB (1− x)N−NB × xβ(1− x)α

Priors that preserve the analytic form of p(x) are called “conjugate 
priors”.  There is nothing special about them except mathematical 
convenience.

If you start with a conjugate prior, you’ll also be able to assimilate new 
data trivially, just by changing the parameters of your estimate.  This is 
because every posterior is in the right analytic form to be the new prior!

Choose  and  to make any 
desired center and width.
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By the way, if I show a special 
love of Bernoulli trials, it might 
be because I am an academic 
descendent of the Bernoulli 
brothers!

Actually, this is not a very exclusive club: 
Gauss and the Bernoullis each have 
~50,000 recorded descendents in the 
Mathematics Genealogy database, and 
probably many times more unrecorded.

bin(n,N, p) =

µ
N

n

¶
pn(1− p)N−n

The probability of getting n events in N 
tries, each with i.i.d. probability p is
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Individual identity, or ancestry, can be 
determined by “variable length short tandem 
repeats” (STRs) in the genome.

~0.5% mutation prob per STR per generation 
(though highly variable)

if use Y chromosome only, get paternal ancestry

There are companies that sell “certificates”
with your genotype.  A bit opportunistic, since 
in a few years your whole genome will be 
sequenced by your health plan.

Next example (with some biology):
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Margaret, my ex-wife, is really into the Towne family.
(And, she’s neither a biologist nor a Towne.)
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Here’s data from Margaret on 8 recent Townes (identified only by T code).
(We’ll use this data several times in the next few of lectures.)

or, just showing the changes:
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N=9

N=10

N=11

N=6

N=1

N=3

=23

=5

=1 =0

=0

=1

=3
=4 (of 12)

=0

=0

bin(1,11x37,r)

bin(1,10x37,r)

bin(0,3x37,r)

bin(0,3x37,r)

bin(0,6x37,r)

bin(1,5x37,r) bin(0,5x37,r)

let’s assume no back mutations!
(their effect on this data set would be small)

Let’s do a Bayesian estimation of the parameter r, the mutation 
rate per locus per generation.
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Unraveling dependencies

d

a

b

c e

Another important idea is “conditional independence”

Example: b and e are “conditionally independent given a”

while b and d are not conditionally independent given a:

?

We used “ancestry” as an intuitive example of how 
dependencies work, because its causal mechanism 
is well known!  Later, we’ll do more general 
“Bayesian networks” to capture models with more 
complicated causal dependencies.
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The log-uniform prior has equal probability in
each order of magnitude.
It is often taken as the non-informative prior when you don’t even know the order of 
magnitude of the (positive) quantity. 
It is an “improper prior” since its integral is infinite.
This is almost always ok, but it is possible to construct paradoxes with improper priors 
(e.g., the “marginalization paradox”)

So we have a statistical model for the data,
that is, a way to compute P (data|parameters)
It is not “exact”, but statistical models rarely (never?) are.

neglects backmutations
assumes single probability for all loci
etc.

The model is:
P (data|r) = bin(0, 3× 37, r) bin(0, 3× 37, r) bin(1, 5× 37, r) bin(0, 5× 37, r)

× bin(0, 6× 37, r) bin(1, 11× 37, r) bin(3, 10× 37, r)

P (r|data) ∝ P (data|r)× P (r) ∝ P (data|r)× 1
r

Bayes estimation of the parameter:
What kind of prior is this???
It is called “log-uniform”R 10r

r
P (r)dr =

R 10r
r

1
rdr = log 10



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 16

Here is the plot of the (normalized) P (r|data)

This is (almost) real biology.  We’ve measured the mutation probability, 
per locus per generation of Y chromosome STRs.  This tells us 
something about the actual DNA replication machinery!
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It really did matter (a bit) that we sorted out the conditional dependencies 
correctly.
Here’s a comparison to doing it wrong by assuming all data independent:

The true dependencies allow 
somewhat larger values of r, 
because we don’t wrongly count 
the =0 branches multiple times

We’ll come back to the Towne 
family for some fancier stuff later!

Ignoring conditional dependencies and just multiplying the probabilities of 
the data as if they were independent is called naïve Bayes.  People often do 
this.  It is mathematically incorrect, but sometimes it is all you can do!
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The basic paradigm of Bayesian parameter estimation :

• Construct a statistical model for the 
probability of the observed data as a 
function of all parameters

– treat dependency in the data correctly
• Assign prior distributions to the parameters

– jointly or independently as appropriate
– use the results of previous data if available

• Use Bayes law to get the (multivariate) 
posterior distribution of the parameters

• Marginalize as desired to get the 
distributions of single (or a manageable 
few multivariate) parameters

Cosmological models are typically fit to many 
parameters.  Marginalization yields the distribution of 
parameters of interest, here two, shown as contours.


