CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin

Lecture 3

Review where we are: $\quad P\left(A \mid S_{B} I\right)=\int_{x} P\left(A \mid S_{B} x I\right) p(x \mid I) d x$
We are trying to estimate a parameter $\quad=\int_{x} \frac{1}{1+x} p(x \mid I) d x$
$x=P\left(S_{B} \mid B C\right), \quad(0 \leq x \leq 1)$
The form of our estimate is a (Bayesian) probability distribution (of the parameter, itself here just happening to be a probability)

This is a sterile exercise if it is just a debate about priors. What we need is data! Data might be a previous history of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

$$
N=35, \quad N_{B}=15, \quad N_{C}=20 \quad \begin{aligned}
& \text { (What's wrong with: } \mathrm{x}=15 / 35=0.43 ? \\
& \text { Hold on...) }
\end{aligned}
$$

We hypothesize (might later try to check) that these are i.i.d. "Bernoulli trials" and therefore informative about x

As good Bayesians, we now need $\quad P(\operatorname{data} \mid x)$
$P($ data $\mid x)\left\{\begin{array}{l}\text { means different things in frequentist vs. Bayesian contexts, } \\ \text { so this is a good time to understand the differences (we'll use } \\ \text { both ideas as appropriate) }\end{array}\right.$
Frequentist considers the universe of what might have been, imagining repeated trials, even if they weren't actually tried, and needs no prior:
since i.i.d. only the \mathcal{N} 's can matter (a so-called "sufficient statistic").

$$
P(\text { data } \mid x)=\binom{N}{N_{B}} \overbrace{x^{N_{\mathrm{B}}}(1-x)^{N_{\mathrm{C}}}}^{\text {prob. of exact sequence seen }} \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

no. of equivalent arrangements

Bayesian considers only the exact data seen, and has a prior:

$$
P(x \mid \text { data }) \propto x^{N_{\mathrm{B}}}(1-x)^{N_{\mathrm{C}}} p(x \mid I) \quad \text { but we might first suppose }
$$

No binomial coefficient, both conceptually and also since independent of x and absorbed in the proportionality. Use only the data you see, not "equivalent arrangements" that you didn't see. This issue is one we'll return to, not always entirely sympathetically to Bayesians (e.g., goodness-of-fit).

Bayes numerator and denominator are:

$$
\begin{aligned}
& P(x \mid \text { data }) \propto x^{N_{B}}(1-x)^{N-N_{B}} \times 1 \\
& \int_{0}^{1} P(x \mid \text { data })=\int_{0}^{1} x^{N_{B}}(1-x)^{N-N_{B}} d x=\frac{\Gamma\left(N_{B}+1\right) \Gamma\left(N-N_{B}+1\right)}{\Gamma(N+2)}
\end{aligned}
$$

Plot of numerator over denominator for $N=35, N_{B}=15$:

You should learn to do calculations like this in MATLAB or Mathematica:

```
symb nn nb x
num = x^nb * (1-x)^(nn- nb)
num =
x nb*(1-x) y nn- nb)
denom = i nt(num 0, 1)
denom =
gamma( nn- nb+1)*gamma( nb+1)/gamma( nn+2)
p = num/ denom
p=
x nb*(1-x) ( nn-nb)/gamma(nn-
nb+1)/gamma( nb+1)*gamma( nn+2)
ezpl ot(subs(p, [ nn, nb], [ 35, 15]), [ 0, 1])
```

```
\(\ln [7]:=\operatorname{num}=\mathbf{x}^{\wedge} \mathbf{n b}(\mathbf{1}-\mathbf{x})^{\wedge}(\mathbf{n n}-\mathbf{n b})\)
Out[7]= \((1-x)^{-n b+n n} x^{n b}\)
\(\ln [8]:=\) denom = Integrate[num, \(\{x, 0,1\}\),
        GenerateConditions \(\rightarrow\) False]
    Out \([8]=\frac{\text { Gamma }[1+\mathrm{nb}] \text { Gamma }[1-\mathrm{nb}+\mathrm{nn}]}{\text { Gamma }[2+\mathrm{nn}]}\)
    \(\ln [9]:=\mathbf{p}\left[\mathbf{x}_{-}\right]=\)num / denom
    Out[9] \(=\frac{(1-x)^{-n b+n n} x^{\mathrm{nb}} \operatorname{Gamma}[2+\mathrm{nn}]}{\text { Gamma }[1+\mathrm{nb}] \operatorname{Gamma}[1-\mathrm{nb}+\mathrm{nn}]}\)
\(\ln [12]:=P \operatorname{lot}[p[x] / .\{n n \rightarrow 35, n b \rightarrow 15\},\{x, 0,1\}\),
    PlotRange \(\rightarrow\) All, Frame \(\rightarrow\) True]
```



```
Out[12]= - Graphics -
```

Find the mean, standard error, and mode of our estimate for x

$$
P(x \mid \text { data }) \propto x^{N_{B}}(1-x)^{N-N_{B}}
$$

$$
\frac{d P(x \mid \text { data })}{d x}=0 \Rightarrow x=\frac{N_{B}}{N} \quad \begin{aligned}
& \text { "maximum likelihood" (ML) answer is to } \\
& \text { estimate x as exactly the fraction seen }
\end{aligned}
$$

$$
\langle x\rangle=\int_{0}^{1} x P(x \mid \text { data }) d x=\frac{N_{B}+1}{N+2} \quad \begin{aligned}
& \text { mean is the } 1^{\text {st }} \text { moment } \\
& \text { notice it's different from ML! }
\end{aligned}
$$

variance involves the $2^{\text {nd }}$ moment,
$\operatorname{Var}(x)=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=\int_{0}^{1} x^{2} P(x \mid$ data $) d x-\langle x\rangle^{2}=\frac{\left(N_{B}+1\right)\left(N-N_{B}+1\right)}{(N+2)^{2}(N+3)}$

This shows how $p(x)$ gets narrower as the amount of data increases.

(Let's leave behind the metaphor of the Jailer and Prisoner A.)

What we are illustrating is called Bernoulli trials:

- two possible outcomes
- i.i.d. events
- a single parameter x (the probability of one outcome)
- a sufficient statistic is the pair of numbers N and N_{B}

Jacob and Johann Bernoulli

$$
\begin{aligned}
& P(\text { data } \mid x)=x^{N_{B}}(1-x)^{N-N_{B}} \quad \text { (in the Bayesian sense) } \\
& P(x \mid \text { data }) \propto x^{N_{B}}(1-x)^{N-N_{B}} \times P(x \mid I)
\end{aligned}
$$

for uniform prior, the Bayes denominator is, as we've seen, easy to calculate:
$\int_{0}^{1} P(x \mid$ data $)=\int_{0}^{1} x^{N_{B}}(1-x)^{N-N_{B}} d x=\frac{\Gamma\left(N_{B}+1\right) \Gamma\left(N-N_{B}+1\right)}{\Gamma(N+2)}$

Are there any other mathematical forms for the prior that would still leave the Bayes denominator easy to calculate?

$$
\begin{aligned}
& \text { Yes! try } \\
& P(x \mid I) \propto x^{\beta}(1-x)^{\alpha \quad} \quad \begin{array}{l}
\text { Choose } \alpha \text { and } \beta \text { to make a } \\
\text { desired center and width. }
\end{array} \\
& P(x \mid \text { data })=x^{N_{B}}(1-x)^{N-N_{B}} \times x^{\beta}(1-x)^{\alpha} \\
& \int_{0}^{1} P(x \mid \text { data })=\int_{0}^{1} x^{N_{B}+\beta}(1-x)^{N-N_{B}+\alpha} d x \\
& =\frac{\Gamma\left(N_{B}+\beta+1\right) \Gamma\left(N-N_{B}+\alpha+1\right)}{\Gamma(N+\alpha+\beta+2)}
\end{aligned}
$$

Priors that preserve the analytic form of $p(x)$ are called "conjugate priors". There is nothing special about them except mathematical convenience.
If you start with a conjugate prior, you'll also be able to assimilate new data trivially, just by changing the parameters of your estimate. This is because every posterior is in the right analytic form to be the new prior!

By the way, if I show a special love of Bernoulli trials, it might be because I am an academic descendent of the Bernoulli brothers!

Actually, this is not a very exclusive club: Gauss and the Bernoullis each have
 Mathematics Genealogy database, and probably many times more unrecorded.

The probability of getting n events in N

 tries, each with i.i.d. probability p is$$
\operatorname{bin}(n, N, p)=\binom{N}{n} p^{n}(1-p)^{N-n}
$$

Next example (with some biology):
Individual identity, or ancestry, can be

$\sim 0.5 \%$ mutation prob per STR per generation (though highly variable)
if use Y chromosome only, get paternal ancestry

YSTR Positions along Y Chromosome
There are companies that sell "certificates" with your genotype. A bit opportunistic, since in a few years your whole genome will be sequenced by your health plan.

Margaret, my ex-wife, is really into the Towne family. (And, she's neither a biologist nor a Towne.)

Here's data from Margaret on 8 recent Townes (identified only by T code). (We'll use this data several times in the next few of lectures.)

			Family Tree DNA 37 Marker Test																																				
		gens	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
William		0	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	17	17	35	39	12	12
T-3	by Jacob	9	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	17	17	35	39	12	12
T-4	by Jacob	11	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	29	15	15	16	17	10	10	23	23	16	15	17	17	35	39	12	12
T-6	by Jacob	11	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	17	17	35	39	12	12
T-8	by Jacob	11	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	17	17	34	39	12	12
T-5	by Joseph	10	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	17	18	11	10	23	23	16	15	17	17	35	39	12	12
T-13	by Joseph	10	13	24	14	11	11	13	12	12	13	14	13	29																									
T-11	by Edmund	9	13	24	14	11	11	14	12	12	11	14	13	30	17	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	16	17	37	38	12	12
T-2	by Edmund	10	13	25	14	11	11	13	12	12	12	13	14	29	18	9	10	11	11	24	15	18	28	15	16	16	17	11	11	19	23	17	16	18	17	37	38	12	12

or, just showing the changes:

			Family Tree DNA 37 Marker Test																																				
		gens	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
William		0	13	24	14	11	11	14	12	12	11	14	13	30	16	9	10	11	11	24	14	19	28	15	15	16	17	10	10	23	23	16	15	17	17	35	39	12	12
T-3	by Jacob	9																																					
T-4	by Jacob	11																					1																
T-6	by Jacob	11																																					
T-8	by Jacob	11																																		-1			
T-5	by Joseph	10																								1	1	1											
T-13	by Joseph	10						-1			2			-1																									
T-11	by Edmund	9													1																			-1		2	-1		
T-2	by Edmund	10		1				-1			1	-1	1	-1	2						1	-1			1			1	1	-4		1	1	1		2	-1		

Let's do a Bayesian estimation of the parameter r, the mutation rate per locus per generation.
let's assume no back mutations!
(their effect on this data set would be small)

Unraveling dependencies

$$
\begin{aligned}
P(a b c d e) & =P(e \mid a b e d) P(a b c d) \\
& =P(e \mid a) P(c \mid \alpha b d) P(a b d) \\
& =P(e \mid a) P(c \mid b) P(d \mid a b) P(a b) \\
& =P(e \mid a) P(c \mid b) P(d \mid b) P(b \mid a) P(a)
\end{aligned}
$$

Another important idea is "conditional independence"
Example: b and e are "conditionally independent given a"

$$
\begin{aligned}
P(b e \mid a) & =P(b \mid \ell a) P(e \mid a) \\
& =P(b \mid a) P(e \mid a)
\end{aligned}
$$

while b and d are not conditionally independent given a :

$$
P(b d \mid a)=P(b \mid d a) P(d \mid a)
$$

So we have a statistical model for the data, that is, a way to compute P (data|parameters)

It is not "exact", but statistical models rarely (never?) are.

neglects backmutations

assumes single probability for all loci
etc.
The model is:

$$
\begin{aligned}
P(\text { data } \mid r) & =\operatorname{bin}(0,3 \times 37, r) \operatorname{bin}(0,3 \times 37, r) \operatorname{bin}(1,5 \times 37, r) \operatorname{bin}(0,5 \times 37, r) \\
& \times \operatorname{bin}(0,6 \times 37, r) \operatorname{bin}(1,11 \times 37, r) \operatorname{bin}(3,10 \times 37, r)
\end{aligned}
$$

Bayes estimation of the parameter:
$P(r \mid$ data $) \propto P($ data $\mid r) \times P(r) \propto P($ data $\mid r) \times \frac{1}{r} \quad \begin{aligned} & \text { What kind of prior is this??? } \\ & \text { It called "log-uniform" }\end{aligned}$
The log-uniform prior has equal probability in $\quad \int_{r}^{10 r} P(r) d r=\int_{r}^{10 r} \frac{1}{r} d r=\log 10$
each order of magnitude. each order of magnitude.
It is often taken as the non-informative prior when you don't even know the order of magnitude of the (positive) quantity.
It is an "improper prior" since its integral is infinite.
This is almost always ok, but it is possible to construct paradoxes with improper priors (e.g., the "marginalization paradox")

Here is the plot of the (normalized) $P(r \mid$ data $)$

This is (almost) real biology. We've measured the mutation probability, per locus per generation of Y chromosome STRs. This tells us something about the actual DNA replication machinery!

It really did matter (a bit) that we sorted out the conditional dependencies correctly.
Here's a comparison to doing it wrong by assuming all data independent:

The true dependencies allow somewhat larger values of r, because we don't wrongly count the $\Delta=0$ branches multiple times

We'll come back to the Towne family for some fancier stuff later!

Ignoring conditional dependencies and just multiplying the probabilities of the data as if they were independent is called naïve Bayes. People often do this. It is mathematically incorrect, but sometimes it is all you can do!

The basic paradigm of Bayesian parameter estimation :

- Construct a statistical model for the probability of the observed data as a function of all parameters
- treat dependency in the data correctly
- Assign prior distributions to the parameters
- jointly or independently as appropriate
- use the results of previous data if available
- Use Bayes law to get the (multivariate) posterior distribution of the parameters
- Marginalize as desired to get the distributions of single (or a manageable few multivariate) parameters

Cosmological models are typically fit to many parameters. Marginalization yields the distribution of parameters of interest, here two, shown as contours.

