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Eigengenes and Eigenarrays

Thus far, we haven’t actually “looked at” the largest-SV orthogonal basis vectors, 
namely the first few columns of U and V

plot(U(:,1),'b')
hold on
plot(U(:,2),'r')
plot(U(:,3),'g')
hold off

plot(V(:,1),'b')
hold on
plot(V(:,2),'r')
plot(V(:,3),'g')
hold off

These are “eigengenes”, the linear 
combination of genes that explain the 
most data.

These are “eigenarrays”, the linear 
combination of experiments that explain 
the most data.

times si

X =

MX
i=1

siU·i ⊗V·i
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However, except in special cases, eigengenes and eigenarrays are not easily 
interpreted.

Since we can permute the order of experiments and/or genes in the data, the 
“shape” of the eigenfunctions has no particular meaning here.

Also, as discussed before, main effects generally don’t correspond 1-to-1 
to eigenanythings.  At best, ~K main effects are in ~K eigenthingies.

Let’s construct a toy gene expression example with 2 main effects, and 
see how they show up in eigengenes and eigenarrays.
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pdata = randn(500,300);
pdata(101:200,51:100) = pdata(101:200,51:100) + 1;
pdata(301:400,201:250) = pdata(301:400,201:250) - 1;
pmean = mean(pdata,1);
pstd = std(pdata,1);
pdata = (pdata - repmat(pmean,[size(pdata,1),1]))./repmat(pstd,[size(pdata,1),1]);
colormap(genecolormap)
image(20*pdata+32)

Make a toy example with (what we would call) 2 main effects:

these genes 
overexpress in 
these conditions

these genes 
underexpress in 
these conditions

note slight vertical banding from subtracting the means
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Did you see the “visual completion” or “visual phantom” illusions in the 
previous slide?

How about these?

Akiyoshi Kitaoka (Ritsumeikan University) Bregman AS (1981)
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[Up Sp Vp] = svd(pdata,0);
spsq = diag(Sp).^2;
semilogy(spsq(1:50),'.b')

As (naively?) expected, there are exactly two large principal components (or SVs)

continues on to 300

So should we expect the eigengenes/eigenarrays to show the 
separate main effects?
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plot(Up(:,1),'b')
hold on
plot(Up(:,2),'r')
plot(Up(:,3),'g')

plot(Vp(:,1),'b')
hold on
plot(Vp(:,2),'r')
plot(Vp(:,3),'g')

Plot 1st three eigengenes and eigenarrays

First two contain an (orthogonalized) mixture of the two main effects.
Third one is, as we expect, “random”.

If we had 20 main effects, the first 20 eigengenes/arrays would be mixtures of 
them.
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There exist methods of Non-negative Matrix Factorization (NMF) whose 
purpose is to stop main effects from mixing when positivity matters.

Example: cluster text documents by word counts

X ≈
MX
i=1

F·i ⊗G·i= Xcounts

words

do
cu

m
en

ts

vector of 0 or pos weights of 
documents in i th cluster vector of 0 or pos weights of 

words in i th cluster

X ≈ FGTi.e.

For our problem, since genes can also be under-expressed, we would need

X ≈ FSGT

positive matrixes

diagonal matrix of ±1

The problem with these methods is
1.  The factorizations are (far from) unique!
2.  The computational algorithms are little better than brute-force minimization of

kX− FGT k How to find the global minimum??

3. There are other good clustering algorithms (GMMs, hierarchical, etc.)

Mention in passing:
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A (binary) classifier classifies data points as + or −

If we also know the true classification, the performance of the classifier 
is a 2x2 contingency table, in this application usually called a
confusion matrix.

good!

good!

bad! (Type I error)

bad! (Type II error)

As we saw, this kind of table has many other uses: treatment vs.
outcome, clinical test vs. diagnosis, etc.

Earlier we were looking at statistically “weak” contingency tables and trying to 
decide if they were significant. Here we’re interested in the strength of the 
signal; the (high) significance is a given.
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Most classifiers have a “knob” or threshold that you can adjust: How certain do they 
have to be before they classify a “+”? To get more TP’s, you have to let in some FP’s!

Notice there is just one free parameter, think of it as TP, since

FP(TP) = [given by algorithm]
TP + FN = P (fixed number of actual positives, column marginal)
FP + TN = N (fixed number of actual negatives, column marginal)

So all scalar measures of performance are functions of one free parameter (i.e., curves).

And the points on any such curve are in 1-to-1 correspondence with those on any other 
such curve.

If you ranked some classifiers by how good they are, you might get a different rankings 
at different points on the scale.

On the other hand, one classifier might dominate another at all points on the scale.

more conservative more liberal

cl
as

si
fie

r

cl
as

si
fie

r

cl
as

si
fie

r

cl
as

si
fie

r TP FP

FN TN

Cartoon, not 
literal:
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Terminology used to measure the performance of classifiers
Different combinations of ratios have been given various names.
All vary between 0 and 1.
A performance curve picks one as the independent variable and looks at another as 
the dependent variable.

Dark color is numerator, dark and light color is denominator.
Blue parameters: 1 is good.  Red: 0 is good.

“one minus”

“one minus”
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ROC (“Receiver Operating Characteristic”) curves 
plot TPR vs. FPR as the classifier goes from 
“conservative” to “liberal”

blue dominates red and green
neither red nor green dominate the other

You could get the best of the red and 
green curves by making a hybrid or 
“Frankenstein” classifier that switches 
between strategies at the cross-over 
points. 



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

ROC curves can always be “upgraded” to their convex hull
by replacing any concave portions by a random sample

List points classified as + by B 
but not A.

Start up the curve to A.

When you reach A, start 
adding a fraction of them 
(increasing from 0 to 1) 
randomly, until you reach B.

Continue on the curve from B.

Of course to measure the ROC curve at all, you have to have known “training” or “ground truth” data.
You use that data to estimate the points A and B, then create the convex (upgraded) classifier.
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Terminology used to measure the performance of classifiers
Different combinations of ratios have been given various names.
All vary between 0 and 1.
A performance curve picks one as the independent variable and looks at another as 
the dependent variable.

Dark color is numerator, dark and light color is denominator.
Blue parameters: 1 is good.  Red: 0 is good.

“one minus”

“one minus”
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Since ROC curves don’t explicitly show any dependence on the constant P/N 
(ratio of actual + to – in the sample) they can be misleading if you care about, 
say, FP versus TP (or any other cross-column comparison).

lam = (0:0.01:1);
fpr = .05 + 0.2 * lam;
tpr = 1 - (.05 + 0.2*(1-lam));
fpr(1) = 0;
fpr(end) = 1;
tpr(1) = 0;
tpr(end) = 1;
plot(fpr,tpr)

Suppose you have a test for Alzheimer’s whose false positive rate can be varied from 5% to 25% 
as the false negative rate varies from 25% to 5% (suppose linear dependences on both):

Suppose you pick here:
FPR = 0.15, TPR=0.85

Now suppose you try the test on a population of
10,000 people, 1% of whom actually are Alzheimer’s positive:

cl
as

si
fie

r

FP swamps TP by ~17:1.  You’ll be telling 17 people 
that they might have Alzheimer’s for every one who 
actually does.  It is unlikely that your test will be used.

In a case like this, ROC, while correct, somewhat misses the point.
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actual

cl
as

si
fie

r

+ −

+

−

TP FP

FN TN

true pos rate (TPR)
≡ sensitivity
≡ recall

actual

cl
as

si
fie

r

+ −

+

−

TP FP

FN TN

pos. predictive value (PPV)
≡ precision

precision-recall curve

Precision-Recall curves overcome this issue by comparing TP with FN and FP

prec = tpr*100./(tpr*100+fpr*9900);
prec(1) = prec(2); % fix up 0/0
reca = tpr;
plot(reca,prec)

Continue our toy example:
note that P and N now enter

never better than ~0.13

0.01

By the way, this shape “cliff” is what the 
ROC convexity constraint looks like in 
a Precision-Recall plot.  It’s not very 
intuitive.
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For fixed marginals P,N the points on the ROC curve are in 1-to-1 
correspondence with the points on the Precision-Recall curve.

That is, both display the same information.  You can go back and forth.

pre, rec from
TPR, FPR

TPR, FPR from
pre, rec

pre =
TPRP

TPRP + FPRN

rec = TPR

rec (1− pre)
pre

P

N
= FPR

It immediately follows that if one curve dominates another in ROC space, it 
also dominates in Precision-Recall space.
(Because a crossing in one implies a crossing in the other, by the above equations.)

But for curves that cross, the metrics in one space don’t easily map to the 
other.  For example, people sometimes use “area under the ROC curve”.  
This doesn’t correspond to “area under the Precision-Recall curve”, or to 
anything simple.
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One also sees used PPV and NPV
(more often as a pair of numbers than as a curve)

PPV: given a positive test, how often does the patient 
have the disease.

NPV: given a negative test, how often is the patient 
disease-free.

cl
as

si
fie

r PPV = 0.054

NPV = 0.998

So could a physician use this test “to rule 
out Alzheimers” in a case that presents 
with some symptoms?

No, because in the population of people 
who present, the ratio of the columns 
would be not nearly so extreme.

You have to be careful about asking 
exactly the question you want!
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In[1]:= eqs  PPV  TPTP  FP, NPV  TN TN  FN, TP  FN  P, TN  FP  N

Out[1]= PPV 
TP

FP  TP
, NPV 

TN
FN  TN

, FN  TP  P, FP  TN  N

In[2]:= ans  FullSimplifySolveeqs, TP, FP, TN, FN

Out[2]= FN  
1  NPV P 1  PPV  N PPV

1  NPV  PPV
, TP 

N 1  NPV  NPV P PPV
1  NPV  PPV

,

FP  
N 1  NPV  NPV P 1  PPV

1  NPV  PPV
, TN 

NPV P 1  PPV  N PPV
1  NPV  PPV



In[4]:= TPR  FullSimplifyTPTP  FN . ans

Out[4]= N 1  NPV  NPV P PPV
P 1  NPV  PPV 

In[5]:= FPR  FullSimplifyFPFP  TN . ans

Out[5]=  N 1  NPV  NPV P 1  PPV
N 1  NPV  PPV 

In[8]:= eqs2  tpr 
N 1  NPV  NPV P PPV

P 1  NPV  PPV
, fpr  

N 1  NPV  NPV P 1  PPV
N 1  NPV  PPV



Out[8]= tpr 
N 1  NPV  NPV P PPV

P 1  NPV  PPV , fpr  
N 1  NPV  NPV P 1  PPV

N 1  NPV  PPV 

In[9]:= FullSimplifySolveeqs2, NPV, PPV

Out[9]= NPV 
1  fpr N

1  fpr N  P 1  tpr , PPV 
P tpr

fpr N  P tpr


It’s easy to get from PPV,NPV to ROC or vice versa.  Or, for that matter, any 
other of the parameterizations.  In Mathematica, for example:


