
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 27

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

NEW TOPIC: Linear “Stuff”: SVD, PCA, Eigengenes, and all that!

We start with a “data matrix” or “design matrix”: X = {Xij}
Let’s use gene expression data as the example.

N rows are data points, here genes 1 – 500
M columns are the responses. View each as a vector in M (here 300)
dimensional space
For gene expression data, each column is a separate micro array experiment
under a different condition

(This is just to give you something to
look it. Typically, for these
techniques, you would not be able to
see anything in the data “by eye”.)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

load yeastarray_t2.txt;
size(yeastarray_t2)
ans =

500 300
yclip = prctile(yeastarray_t2(:),[1,99])
yclip =

-204 244
data = max(yclip(1),min(yclip(2),yeastarray_t2));
dmean = mean(data,1);
dstd = std(data,1);
data = (data - repmat(dmean,[size(data,1),1]))./repmat(dstd,[size(data,1),1]);
genecolormap = [min(1,(1:64)/32); 1-abs(1-(1:64)/32); min(1,(64-(1:64))/32)]';
colormap(genecolormap);
image(20*data+32)

Let’s always assume that the individual experiments (columns of X) have zero
mean. (Can always get this by subtracting the mean of each column.)

While we’re at it, we might as well also scale each column to unit standard
deviation.

And, it’s a good idea to eliminate outliers.

Matlab for this (and plotting the previous picture) is:

clip outliers by percentile (bottom
and top 1%)

this is the arcane Matlab colormap stuff for
making a blue-to-white-to-red plot that we
saw beforesaturate to red or blue at ~1.5

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

Singular Value Decomposition (SVD)

Any matrix X (needn’t be square) can be decomposed, more-or-less
uniquely, as follows:

X =

VT

U

s1
s2

…

cols are
orthonormal basis
for an M
dimensional
subspace of N

rows (cols of V)
are a complete
orthonormal basis
for M dimensional
space

diagonal matrix of
positive “singular
values” arranged from
largest to smallest

Decomposition has an efficient algorithm (of order the same workload as
inverting a matrix). Matlab and NR3 have ready-to-use implementations.

Degree of freedom
(DOF) counting:

MN = MN – M(M+1)/2 + M + M2 – M(M+1)/2

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

We can write out the (middle) sums over the singular values explicitly. Each
column of U gets paired with the corresponding row of VT (or column of V).

X =

MX
i=1

siU·i ⊗V·i

This turns out to be the optimal decomposition of X into rank-1 matrices,
optimal in the sense that the partial sums converge in the “greediest” way in L2

norm. (I.e., at each stage in the sum, there is no better decomposition.)

note: “dot” now does NOT mean
sum. It’s just a placeholder!

Recall: A rank-one matrix has all its columns proportional to each other, which also implies that
all the rows are proportional to each other: Cij = Ai Bj So the rows (or columns) lie on a one-
dimensional line in the row (or column) dimension space.

=
X
i

⎡⎣X
j

XijX
T
ji

⎤⎦

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 6

If the data actually lie on a lower dimensional (than M) hyperplane that
goes through the origin, then only that many si’s will be nonzero.

That is why we subtracted the means!

Notice that this captures only a “linear” (hyperplane) view of the world.
More complicated functional relationships that might decrease
dimensionality are not, in general, identified by SVD or PCA.

Or, in the general case we can just truncate the sum to get the best lower rank
approximation to X. This can be useful for filtering out noise (we will see).

X =
MX
i=1

siU·i ⊗V·i
So this “builds up dimensionality” with each
term in the sum: adds a new basis vector (in
both the U and the V spaces)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 7

NΣ = XTX = (VSTUT)(USVT) = V(S2)VT

Principal Component Analysis (PCA)

It follows that the data points in X have their largest variance in the V.1
direction.
Then, in the orthogonal hyperplane, the 2nd largest variance is in the V.2
direction.
And so forth.

Note that the (sample) covariance of the experiments is:

diagonal

So V is a rotation matrix that diagonalizes the covariance matrix.

Uses fact that we subtracted the means : ‹ x x ›.

V.1

V2

V.3
Cov(Expti,Exptj) = Σij =

1

N

X
k

XkiXkj

in our example, 300 dim space
with 500 scattered points in it –
and now a covariance ellipsoid

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 8

So we might usefully coordinatize the data
points by their M projections along the V.i
directions (instead of their M raw
components). These projections are a matrix
the same shape as X. Since the directions
are orthonormal columns, it is simply

XV = US (using X = USVT)

rows are the data points,
column components are the principal coordinates of that row

V.1

V2

V.3

Also, it’s easy to see that (by construction) the principal components of the
points are uncorrelated, that is, have a diagonal correlation matrix:

(XV)T (XV) = (US)T (US) = ST (UTU)S = S2

diagonal

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 9

Lets plot our expression data in the plane of the top 2 principal components:

[U S V] = svd(data, 0);
pcacoords = U*S;
plot(pcacoords(:,1),pcacoords(:,2),'r.')
axis equal

Direction 1 has larger
variance than direction
2, and there is no
correlation between the
two, all as advertised.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 10

As already shown, the squares of the SV’s are proportional to the portion
of the total variance (L2 norm of X) that each accounts for.

ssq = diag(S).^2;
plot(ssq)
semilogy(ssq,'.b')

Where do these values start to be explainable
simply as noise? Here? or here? or here?

(Of course, we’ll never really know from a single data set, since, in the limit of fine-grain effects,
signal is just repeatable noise!) But we can often make a guess after examining the data.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 11

People who love PCA (I call them “linear thinkers”) always hope that the principal
coordinates will magically correspond to distinct, real effects (“main effects”).

early in cell cycle late in cell cycle

nucleus

cytoplasm

This is sometimes true for the 1st principal component, and rarely true after that. I
think the reason is that orthogonality (in the mathematical sense of SVD) is rarely a
useful decomposition of “distinct, main effects”, which tend to be highly correlated
mathematically, even when they are “verbally orthogonal”.

However, it is often true that ~K main effects are captured (somewhere) in the
subspace of the first ~K principal components.

So, PCA is a useful technique for dimensional reduction. Just don’t try to
[over]interpret the meaning of individual coordinates! (Let’s see examples.)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 12

fakedata = randn(500,300);
[Uf Sf Vf] = svd(fakedata,0);
sfsq = diag(Sf).^2;
semilogy(sfsq,'.r')

Fake has to be higher than real here, because
area under the curves (if they were plotted on a
linear scale) has to be the same for the two
curves (same total variance or L2 norm)

I’d say it’s questionable that there’s much information
in our real data set beyond around here

Why does fake show a trend at all?
Because even random numbers are
monotonic if you sort them! We are seeing
the “order statistics” for SVs from a Gaussian
random matrix.

One way to inform our guess as to what is signal (vs. noise) is to
compare to a matrix of Gaussian random deviates:

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

Sometimes, people plot the fractional variance as a function of number of
SVs, which also shows how we converge to an exact SV decomposition:

ssqnorm = cumsum(ssq)/sum(ssq);
sfsqnorm = cumsum(sfsq)/sum(sfsq);
plot(ssqnorm,'b')
hold on
plot(sfsqnorm,'r')
hold off

yeast data Gaussian random

straight line

You might have expected the Gaussian random to be close to the straight line, since
each random SV should explain about the same amount of variance. But, as before,
we’re seeing the (sorted) order statistics effect. So it is actually rather hard to interpret
from this plot (if you had only the blue curve) what is real versus noise and how
impressed you should be by a rapid initial rise.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 14

For the data in this example, a sensible use of PCA (i.e., SVD) would be to
project the data into the subspace of the first ~20 SVs, where we can be
sure that it is not noise.

strunc = diag(S);
strunc(21:end) = 0;
filtdata = U*diag(strunc)*V';
colormap(genecolormap);
image(20*filtdata+32)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 15

original data set:

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 16

Or, just 5 SV’s:

strunc(6:end) = 0;
filtdata = U*diag(strunc)*V';
colormap(genecolormap);
image(20*filtdata+32)

