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Want to see some wavelets?  Where do they come from?

The “DAUB” wavelets are named 
after Ingrid Daubechies, who 
discovered them.

(This is like getting the sine 
function named after you!)

So who is the sine function named 
after?  it’s the literal translation into 
Latin, ca. 1500s, of the corres-
ponding mathematical concept in 
Arabic, in which language the 
works of Hipparchus (~150 BC) 
and Ptolemy (~100 AD) were 
preserved.  The tangent function 
wasn’t invented until the 9th

Century, in Persia.
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The first key idea in wavelets (“quadrature mirror filter”) is to find an 
orthogonal transformation that separates “smooth” from “detail” information.  
We illustrate in the 1-D case.

smooth average of 4 
sequential components

not-smooth linear combination

transpose is implying orthogonality conditions

these are two conditions on 4 
unknowns, so we get to impose two 
more conditions
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Choose the extra two conditions to make the not-smooth linear combination 
have zero response to smooth functions.  That is, make its lowest moments 
vanish:

no response to a constant function

no response to a linear function

The unique solution is now

“the DAUB4 wavelet coefficients”

If we had started with a wider-banded matrix we could have gotten higher 
order Daubechies wavelets (more zeroed moments), e.g., DAUB6:
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The second key idea in wavelets is to apply the orthogonal matrix multiple 
times, hierarchically.  This is called the pyramidal algorithm.

Since each step is an orthogonal rotation (either in the full space or in a subspace), the 
whole thing is still an orthogonal rotation in function space.

QMF

QMF

For multi-dimensional wavelet transforms, you separately transform each dimension, in 
any order.  (Same procedure as multi-dimensional Fourier transform.)
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the cusps are really there: DAUB4 has no right-derivative 
at values p/2n, for integer p and n

Higher DAUBs gain about half a degree of continuity per 2 
more coefficients.  But not exactly half.  The actual orders 
of regularity are irrational!

Continuity of the wavelet is not the same as continuity of the representation.  DAUB4 
represents piecewise linear functions exactly, e.g.  But the cusps do show up in truncated
representations as “wavelet plaid”.

We can see individual wavelets by 
taking the inverse transform of unit 
vectors in wavelet space:

That’s all for wavelets!
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If y satisfies                    in any number of dimensions, then for any sphere
not intersecting a boundary condition,

Laplace Interpolation is a specialized interpolation method for restoring 
missing data on a grid.  It’s simple, but sometimes works astonishingly well.

Mean value theorem for solutions of Laplace’s equation (harmonic functions):

∇2y = 0

So Laplace’s equation is, in some sense, the perfect interpolator.  It also turns out to 
be the one that minimizes the integrated square of the gradient,

So the basic idea of Laplace interpolation is to set
at every known data point, and solve                       at every unknown point.

1

area

Z
surface ω

y dω = y(center)
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You may not be used to thinking of Laplace’s equation as allowing 
isolated internal boundary conditions.  But it of course does!

“usual” kind of 
boundary condition

internal boundary 
condition

values are fixed on red dots
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Lots of linear equations (one for each grid point)!

generic equation for an unknown point
note that this is basically the mean value theorem

generic equation for a known point

lots of special cases:

There is exactly one equation for each grid point, so we can solve this as a giant 
(sparse!) linear system, e.g., by the bi-conjugate gradient method.

Surprise! It’s in NR3, as Laplace_interp, using Linbcg for the solution.
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Easy to embed in a mex function for Matlab

#include "..\nr3_matlab.h"
#include "linbcg.h"
#include "interp_laplace.h“

/* Usage:
outmatrix = laplaceinterp(inmatrix)

*/

Laplace_interp *mylap = NULL;

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
if (nrhs != 1 || nlhs != 1) throw("laplaceinterp.cpp: bad number of args");
MatDoub ain(prhs[0]);
MatDoub aout(ain.nrows(),ain.ncols(),plhs[0]);
aout = ain; // matrix op
mylap = new Laplace_interp(aout);
mylap->solve();
delete mylap;
return;

}
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IN = fopen('image-face.raw','r');
face = flipud(reshape(fread(IN),256,256)');
fclose(IN);
bwcolormap = [0:1/256:1; 0:1/256:1; 0:1/256:1]';
image(face)
colormap(bwcolormap);
axis('equal')

Let’s try it on our favorite face for filtering
(But this is interpolation, not filtering:  there is no noise!)
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facemiss = face;
ranface = rand(size(face));
facemiss(ranface < 0.1) = 255;
image(facemiss)
colormap(bwcolormap)
axis('equal')

delete a random 10% of pixels
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facemiss(facemiss > 254) = 9.e99;
newface = laplaceinterp(facemiss);
image(newface)
colormap(bwcolormap)
axis('equal')

restore them by Laplace interpolation

pretty amazing!

this is the convention expected by laplaceinterp for missing data
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facemiss = face;
ranface = rand(size(face));
facemiss(ranface < 0.5) = 255;
image(facemiss)
colormap(bwcolormap)
axis('equal')

delete a random 50% of pixels
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facemiss(facemiss > 254) = 9.e99;
newface = laplaceinterp(facemiss);
image(newface)
colormap(bwcolormap)
axis('equal')

restore them by Laplace interpolation

starting to see some degradation
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facemiss = face;
ranface = rand(size(face));
facemiss(ranface < 0.9) = 255;
image(facemiss)
colormap(bwcolormap)
axis('equal')

delete a random 90% of pixels
(well, it’s cheating a bit, because your eye can’t see 
the shades of grey in the glare of all that white)
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This is a bit more fair…
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facemiss(facemiss > 254) = 9.e99;
newface = laplaceinterp(facemiss);
image(newface)
colormap(bwcolormap)
axis('equal')

still pretty amazing (e.g., would you have thought that the individual teeth were 
present in the sparse image?)

restore by Laplace interpolation
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In dimensions >2, the explosion of volume makes things difficult.

Rarely enough data for any kind of mesh.

Lots of near-ties for nearest neighbor points (none very near).

The problem is more like a machine learning problem:

Given a training set xi with “responses” yi, i = 1…N
Predict y(x) for some new x

Example: In a symmetrical multivariate normal distribution in large 
dimension D, everything is at almost the same distance from 
everything else:

Interpolation on Scattered Data in Multidimensions


