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Wiener Filtering (a.k.a. Optimal Filtering)

This general idea can be applied whenever you have a basis
in function space that concentrates “mostly signal” in some
components relative to “mostly noise” in others.

You could just set components with too much noise to zero.

Wiener filtering is better:  it gives the optimal way of tapering off the noisy 
components, so as to give the best (L2 norm) reconstruction of the original 
signal.

Can be applied in spatial basis (delta functions, or pixels), Fourier basis 
(frequency components), wavelet basis, etc.

Different bases are not equivalent, because, in particular problems, signal 
and noise distribute differently in them.  A lot of signal processing is finding 
the right basis for particular problems – in which signal is most 
concentrated.

(For simplicity, I’m going to write out the equations as if in a finite-dimensional space,
but think infinite dimensional.)

Norbert Wiener
1894 - 1964
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You measure components of signal plus noise

Let’s look for a signal estimator that simply scales the individual components 
of what is measured

Here is where we use the fact that we are in some orthogonal basis, so the L2

norm is just the sum of squares of components:  

Differentiate w.r.t.  and set to zero, giving

This is the Wiener filter.  It requires 
estimates of the signal and noise power in 
each component.
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things, signal and noise
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Let’s demonstrate in some different bases on this image:

IN = fopen('image-face.raw','r');
face = flipud(reshape(fread(IN),256,256)');
fclose(IN);
bwcolormap = [0:1/256:1; 0:1/256:1; 0:1/256:1]';
image(face)
colormap(bwcolormap);
axis('equal')

(Favorite demo image in NR.  Very retro, it’s an IRE test photo from the 1950s, shows film grain and other defects.)

the file is unformatted bytes, so you read it 
with fopen and fread
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Add noise (here, Gaussian white noise):

noisyface = face + 20*randn(256,256);
noisyface = 255 * (noisyface - min(noisyface(:)))/(max(noisyface(:))-min(noisyface(:)));
image(noisyface)
colormap(bwcolormap);
axis('equal')

Have to rescale, because noise takes it out of 0-255.  
Note reduced contrast resulting.
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First example:  Fourier basis
This will be a “low pass filter” using the fact that the signal is concentrated at 
low spatial frequencies, while the noise is white (flat).

Actually, Fourier is not a great basis for de-noising most images, since low-pass will 
reduce the resolution of the picture (blur it) along with de-noising.  

fftface = fft2(noisyface);

[row col] = ndgrid(1:256);
ftable = [0:127,128:-1:1];
freqs = 0.5 * sqrt((ftable(row).^2+ftable(col).^2)/(2*128^2));

1 1 1… 1 2 3…
2 2 2… 1 2 3…
3 3 3… 1 2 3…

Nyquist frequency
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Yes, we can see a separation between signal and noise:

noise model

Why the line a bit low?
I played around with it to 
make the picture look better!

So my reconstruction is not 
exactly best least squares 
reconstruction, but will be 
less blurred.

signal model

samp = randsample(256*256,3000);
plot(freqs(samp),log10(abs(fftface(samp))),'.')

abs is here the complex modulus



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 8

de-noised

sig = 10.^(5.5 - 15 .* freqs);
noi = 10.^3.2;
fftfiltface = fftface .* (sig.^2 ./ (sig.^2 + noi.^2));
reface = ifft2(fftfiltface,'symmetric');
image(reface)
colormap(bwcolormap);
axis('equal')

I just read the constants off by eye from the previous chart

note square, to get power

this tells Matlab that you intend the 
inverse FFT to be real-valued
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noisy

Actually, you might prefer the noisy image, because 
your brain has good algorithms for adaptively 
smoothing!  But it is a less accurate representation of 
the original photo in L2 norm!
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1957

Feb., 1956

Who was the 1950s IRE image lady? 
We may never know.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4056616&userType=inst
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In 1960, she was briefly sighted in Princeton
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By 1987, when the IRE 
had already become the 
IEEE, she hadn’t aged 
a bit!
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Ageless, she was blogging in 2007, perhaps having been copied from NR!
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We do know what happened to 1970s Lena, an early digital test image.

Lena, 1972 (detail)
Lena, 1997, accepting medal from Society for 
Imaging Science and Technology
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Second example: spatial (pixel) basis

It doesn’t make sense to use the pure pixel basis, because there is no 
particular separation of signal and noise separately in each pixel.

But a closely related method is to decompose the image into a smoothed 
background image, and then to take deviations from this as estimating
signal power + noise power:

Xij =
1
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and let the user adjust            as a parameter.
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“hood” might be a 5x5 
neighborhood centered on 
each point

this is the Wiener part
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wiener = wiener2(noisyface,[5,5]);
image(wiener)
colormap(bwcolormap);
axis('equal')

Matlab has a function for this called wiener2

you can put your noise estimate as another 
argument, or you can let Matlab estimate it as 
some kind of heuristic minimum of values seen 
for S2+N2 over the image
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noisy
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#include "nr3_matlab.h"
#include "wavelet.h“

/* Matlab usage:
outmatrix = wavelet2(inmatrix,isign)

*/

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
MatDoub ain(prhs[0]);
VecInt dims(2);
Int mm=(dims[0]=ain.nrows()),nn=(dims[1]=ain.ncols());
Int isign = Int(mxScalar<Doub>(prhs[1]));
Int i,mn = mm*nn;
Daub4 daub4;
if (nrhs != 2 || nlhs != 1) throw("wavelet2.cpp: bad number of args");
if ((nn & (nn-1)) != 0 || (mm & (mm-1)) != 0)

throw("wavelet2.cpp: matrix sizes must be power of 2");
VecDoub a(mn);
for (i=0;i<mn;i++) a[i] = (&ain[0][0])[i];
wtn(a,dims,isign,daub4);
MatDoub aout(mm,nn,plhs[0]);
for (i=0;i<mn;i++) (&aout[0][0])[i] = a[i];
return;

}

Most fun of all is the wavelet basis.
You don’t even have to know what it is, except that it is an (orthogonal) 
rotation in function space, as is the Fourier transform.
(Its basis is localized both in space and in scale.)

Matlab has a Wavelet Toolbox which I find completely incomprehensible! (I’m sure it’s only me 
with this problem.)  So, I’ll do a mexfunction wrapper of the NR3 wavelet transform.

this is the whole point,
the NR3 wavelet transform
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waveface = wavelet2(noisyface,1);
dist = log10(abs(waveface));
hist(dist(:),200)

Take the wavelet transform and look at the magnitude of the components 
on a log scale:

this is noise

signal is in here

log10
Notice the difference in philosophy from Fourier:  There we used frequency 
(“which component”) to estimate S and N.  Here we use the magnitude of the 
component directly , without regard to which component it is.
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If you fiddle around with mapping the gray scale (zero point, contrast, etc.) 
of the matrix “waveface” you can see how the wavelet basis works

low resolution 
information is in this 
corner

high resolution 
information is in this 
corner
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fwaveface = waveface;
fwaveface(abs(waveface)<30) = 0.;
werecface = wavelet2(fwaveface,-1);
image(werecface)
colormap(bwcolormap)
axis('equal')

Truncate-to-zero components with magnitude less than 30.
This is not a true Wiener filter, because it doesn’t roll off smoothly.

Notice the “wavelet plaid” in the 
image.  You sometimes see this on 
digital TV, because MPEG4 uses 
wavelets for still texture coding.
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fwaveface = waveface .* (waveface .^ 2 ./ (waveface.^2 + 900));
werecface = wavelet2(fwaveface,-1);
image(werecface)
colormap(bwcolormap)
axis('equal')

Compare to Wiener filter (smooth roll-off)

i.e., noise amplitude 30 in the 
previous histogram
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Even better if we restore the contrast

werecface = 255*(werecface - min(werecface(:)))/(max(werecface(:))-min(werecface(:)));
image(werecface)
colormap(bwcolormap)
axis('equal')
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Compare to what we started with (noisy)



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 25

Of course, we can never get the original back:
information is truly lost in the presence of noise

The moral about Wiener filters is that they work in any basis, but are better 
in some than in others.  That is what signal processing is all about!
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Want to see some wavelets?  Where do they come from?

The “DAUB” wavelets are named 
after Ingrid Daubechies, who 
discovered them.

(This is like getting the sine 
function named after you!)

So who is the sine function named 
after?  it’s the literal translation into 
Latin, ca. 1500s, of the corres-
ponding mathematical concept in 
Arabic, in which language the 
works of Hipparchus (~150 BC) 
and Ptolemy (~100 AD) were 
preserved.  The tangent function 
wasn’t invented until the 9th

Century, in Persia.


