
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 24



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

Here’s the Metropolis-Hastings step function:

function cnew = mcmcstep(cold, covar)
cprop = mvnrnd(cold,covar);
alpha = min(1,exp(loglikefn(cold)-loglikefn(cprop)));
if (rand < alpha)

cnew = cprop;
else

cnew = cold;
end

function ll = loglikefn(cc)  %subfunction
global exsamp;
ll = twostudloglikenu(cc,exsamp);

chain = zeros(1000,6);
chain(1,:) = cstart;
for i=2:1000

chain(i,:) = mcmcstep(chain(i-1,:),covar);
end
plot(chain(:,5),chain(:,6))

Let’s see the first 1000 steps:

width of 2nd

component
Student-t index

we’re only plotting 2 components of chain, 
but it of course actually is a sample of the 
joint distribution of all the parameters
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chain = zeros(10000,6);
chain(1,:) = cstart;
for i=2:10000, chain(i,:) = mcmcstep(chain(i-1,:),covar); end
plot(chain(:,5),chain(:,6),'.r')

Try 10000 steps:

OK, plausibly ergodic.  Should probably do 100000 steps, but Matlab is too 
slow and I’m too lazy to program it in C.  (Don’t you be!)
There are various ways of checking for convergence more rigorously, none of 
them foolproof; see NR3.
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The big payoff now is that we can look at the posterior distribution of any 
quantity, or derived quantity, or joint distribution of quantities, etc., etc.

areas = chain(:,2)./(chain(:,3).*chain(:,5));
plot(areas,chain(:,6))
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hist(areas,1:.2:15)

We can now see why the ratio of areas is so hard to determine:
For some of our data samples, it can be bimodal.  Maximum 
likelihood and derivatives of the log-likelihood (Fisher information 
matrix) don’t capture this.  MCMC and Bayes posteriors do.
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Incidentally, the distributions are very sensitive to the tail data.
Different samples of 600 points give (e.g.)

With only one data set, you could diagnose this sensitivity by bootstrap resampling.   
Despite this, fierce Bayesians show only the posteriors from all the data actually known.
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Let’s do another MCMC example to show how it can be used with models that might 
be analytically intractable (e.g., discontinuous or non-analytic).
[This is the example worked in NR3.]

The lazy birdwatcher problem

• You hire someone to sit in the forest and look
for mockingbirds.

• They are supposed to report the time of each sighting ti
– But they are lazy and only write down (exactly) every k1 sightings (e.g., k1= every 3rd)

• Even worse, at some time tc they get a young child to do the counting for them
– He doesn’t recognize mockingbirds and counts grackles instead
– And, he writes down only every k2 sightings, which may be different from k1

• You want to salvage something from this data
– E.g., average rate of sightings of mockingbirds and grackles
– Given only the list of times
– That is, k1, k2, and tc are all unknown nuisance parameters

• This all hinges on the fact that every second (say) event in a Poisson process is 
statistically distinguishable from every event in a Poisson process at half the mean rate

– same mean rates
– but different fluctuations
– We are hoping that the difference in fluctuations is enough to recover useful information

• Perfect problem for MCMC
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Waiting time to the kth event in a Poisson process with rate  is distributed 
as Gamma(k,)

And non-overlapping intervals are independent:

So

Proof:

p(τ)dτ = P (k − 1 counts in τ)× P (last dτ has a count)
= Poisson(k − 1,λτ)× (λ dτ)

=
(λτ )k−1

(k − 1)! e
−λτλ dτ
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In the acceptance probability the ratio of the q’s in

is just x2c/x1, because

What shall we take as our proposal generator?
This is often the creative part of getting MCMC to work well!

For tc, step by small additive changes (e.g., normal)

For 1 and 2, step by small multiplicative changes (e.g., lognormal)

Bad idea: For k1,2 step by 0 or ±1
This is bad because, if the ’s have converged to about the right rate, then a change in 
k will throw them way off, and therefore nearly always be rejected.  Even though this 
appears to be a “small” step of a discrete variable, it is not a small step in the model!

Good idea: For k1,2 step by 0 or ±1, also changing 1,2 so as to 
keep /k constant in the step

This is genuinely a small step, since it changes only the clumping statistics, by the 
smallest allowed amount.
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Let’s try it.
We simulate 1000 ti’s with the secretly known 1=3.0, 2=2.0, tc=200, k1=1, k2=2

Start with wrong values  1=1.0, 2=3.0, tc=100, k1=1, k2=1 

“burn-in” period while it locates
the Bayes maximum

ergodic period during which we record 
data for plotting, averages, etc.
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Histogram of quantities during a long-enough ergodic time

These are the actual Bayesian posteriors of the model!

Could as easily do joint probabilities, covariances, etc., etc.

Notice does not converge to being centered on the true values, 
because the (finite available) data is held fixed.  Convergence is to the 
Bayesian posterior for that data.
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Burn-in can have multiple timescales
(e.g., ascent to a ridge, travel along ridge)

Wikipedia


