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Markov Chain Monte Carlo (MCMC)

Data set

Parameters

We want to go beyond simply maximizing
and get the whole Bayesian posterior distribution of 

Bayes says this is proportional to
but with an unknown proportionality constant (the Bayes denominator). It 
seems as if we need this denominator to find confidence regions, e.g., 
containing 95% of the posterior probability. 

With such a sample, we can compute any quantity of interest 
about the distribution of     , e.g., confidence regions, means,
standard deviations, covariances, etc. 

(sorry, we’ve changed notation!)

But no! MCMC is a way of drawing samples
from the distribution
without having to know its normalization!  
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Two ideas due to Metropolis and colleagues make this possible:

1. Instead of sampling unrelated points, sample a Markov chain
where each point is (stochastically) determined by the previous one
by some chosen distribution

Although locally correlated, it is possible to make this sequence ergodic,
meaning that it visits every x in proportion to (x).

2.  Any distribution                       that satisfies 

(“detailed balance”) will be such an ergodic sequence!

Deceptively simple proof: Compute distribution of x1’s successor point

So how do we find such a p(xi|xi-1) ?
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Metropolis-Hastings algorithm:

Pick more or less any “proposal distribution”
(A multivariate normal centered on x1 is a typical example.)

Then the algorithm is:

1. Generate a candidate point x2c by drawing from the proposal distribution 
around x1

2. Calculate an “acceptance probability” by
Notice that the q’s
cancel out if symmetric 
on arguments, as is a 
multivariate Gaussian

3. Choose x2 = x2c with probability , x2 = x1 with probability (1-)

So,

It’s something like: always accept a proposal that increases the probability, and 
sometimes accept one that doesn’t.  (Not exactly this because of ratio of q’s.)

1953

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953), Hastings (1970)
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Proof:

which is just detailed balance, q.e.d.

So,

But

and also the other way around

So,
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History has treated Metropolis perhaps 
more kindly than he deserves.
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The Gibbs Sampler is an interesting special case of Metropolis-Hastings

A “full conditional distribution” of            is the normalized distribution 
obtained by sampling along one coordinate direction (i.e. “drilling through”
the full distribution.  We write it as                   .   

“given all coordinate 
values except one”

Theorem:  A multivariate distribution is uniquely determined by all of its full 
conditional distributions.
Proof (sort-of):  It’s a hugely overdetermined set of linear equations, so any 
degeneracy is infinitely unlikely!

Metropolis-Hastings along one direction looks like this:

Choose the proposal distribution
Then we always accept the step!

But a proposal distribution must be normalized, so we actually do
need to be able to calculate

but only along one “drill hole” at 
a time!
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So, Gibbs sampling looks like this:

• Cycle through the coordinate 
directions of x

• Hold the values of all the other
coordinates fixed

• “Drill”, i.e., sample from the one 
dimensional distribution along the 
non-fixed coordinate.

– this requires knowing the 
normalization, if necessary by 
doing an integral or sum along 
the line

• Now fix the coordinate at the 
sampled value and go on to the 
next coordinate direction.

source: Vincent Zoonekynd

Amazingly, this actually samples the full 
(joint) posterior distribution!
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Gibbs sampling can really win if there are only a few discrete values along 
each drill hole.

oK
oJ

oI
oH
oG

oF
oE

oD
oC
oB

oA
Cl3Cl2Cl1

Example:  Assigning objects to clusters.
Now x is the vector of assignments of 
each object.  Each component of x has 
just (here) 3 possible values.

We assume of course some statistical 
model            that is the relative 
likelihood of a particular assignment 
(e.g., that all the objects in a given 
column are in fact drawn from that 
column’s distribution).

Then Gibbs sampling says just cycle 
through the objects, reassigning each in 
turn by its conditional distribution.

Amazingly, this actually samples the full 
(joint) posterior distribution!



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 10

g = readgenestats('genestats.dat');
exloglen = log10(cell2mat(g.exonlen));
global exsamp;
exsamp = randsample(exloglen,600);
[count cbin] = hist(exsamp,(1:.1:4));
count = count(2:end-1);
cbin = cbin(2:end-1);
bar(cbin,count,'y')

Let’s try MCMC on our two-Student-t model, assuming (as before)
600 data points, drawn as a random sample from the full data set

Get the data:

cstart = [2.1 0.19 0.09 3.1 0.26 4.2]
loglikefn = @(cc) twostudloglikenu(cc,exsamp);
covar = 0.1 * inv(hessian(loglikefn,cstart,.001))
cstart =

2.1000    0.1900    0.0900    3.1000    0.2600    4.2000
covar =

0.0000    0.0000 -0.0000    0.0000   -0.0000   -0.0001
0.0000    0.0000 0.0000 0.0000 -0.0000    0.0005

-0.0000    0.0000    0.0000 -0.0000   -0.0000 0.0003
0.0000    0.0000 -0.0000    0.0003   -0.0001   -0.0010

-0.0000   -0.0000 -0.0000 -0.0001    0.0002    0.0013
-0.0001    0.0005    0.0003   -0.0010    0.0013    0.0904

Get a starting value from one of our previous 
fits, and use its (scaled) covariance matrix 
for the proposal distribution:

(they’re not really zeros, 
they just print that way)

shown here binned, but we 
won’t actually use bins
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Here’s the Metropolis-Hastings step function:

function cnew = mcmcstep(cold, covar)
cprop = mvnrnd(cold,covar);
alpha = min(1,exp(loglikefn(cold)-loglikefn(cprop)));
if (rand < alpha)

cnew = cprop;
else

cnew = cold;
end

function ll = loglikefn(cc)  %subfunction
global exsamp;
ll = twostudloglikenu(cc,exsamp);

chain = zeros(1000,6);
chain(1,:) = cstart;
for i=2:1000

chain(i,:) = mcmcstep(chain(i-1,:),covar);
end
plot(chain(:,5),chain(:,6))

Let’s see the first 1000 steps:

width of 2nd

component
Student-t index

we’re only plotting 2 components of chain, 
but it of course actually is a sample of the 
joint distribution of all the parameters


