CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin
Lecture 22

Plot distribution in descending order. Also calculate entropy:

Actually, the single peptide ("monographic") entropy is only a bound on the true entropy of proteins, because there can be (and is) multiple symbol nonrandomness.

Standard compression programs bound the entropy, sometimes well, sometimes not:

```
Di rectory of D: \staticbio\ prot*
4/11/08 12:18 9,753,363 ___A_ prot eomeHGl7.t xt
4/14/08 17:45 5,554,389 ___A_ prot eomeHGl7.zi p
4/11/08 12:18 5,554,186 ___A_ proteomeHGl7_1.txt.gz
```

$8 \times 5554186 / 9753363=4.556$ (yuck! not as good as our monographic bound of 4.191)
Let's look at the dipeptide (digraph) and tripeptide (trigraph) distribution.

```
I oad 'aadi st_di.txt';
di = aadi st_di ./ sumfaadi st_di (:));
hzdi = entropy2(di)
h2di = 8.3542 / 2 = 4.177
load 'aadi st_tri.txt';
tri = aadist_tri ./ sumaadi st_tri(:));
h2tri = entropy2(tri)
n2tri =
    12. 5026
```

(We'll see in a minute that it's a mathematical theorem that these have to decrease - but they don't have to decrease much!)

Actually it's interesting to look at the dipeptide distribution

di mat $=$ reshape(di, 32, 32);
i mage_di $=64 * d i \operatorname{mat} . / \max (d i \operatorname{mat}(:)) ;$
i mage(i mage_di ($1: 25,1: 25$)) col or rap(' hot')

But what we are seeing is mostly just the outer product of the monographic distribution!

```
Alanine
Arginine
Asparagine
Aspartic acid (Aspartate)
Cysteine
Glutamine
Glutamic acid (Glutamate)
Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine
```

```
discrep = di mat - mono * mono';
```

i mage_di screp $=$ (32/ max(di screp(:))) * di screp+32;
i rage(i mage_di screp(1: 25, 1: 25));
genecol or map $=[\min (1,(1: 64) / 32) ; 1$ - abs(1-(1:64)/32); min(1, (64-(1:64))/32)]';
col or map(genecol or map)
first

Interesting biology: AA's like to repeat. Is this AA chemistry or genomic stuttering? And what's going on among S, E, P, and K?

Is there more we can say about this picture information theoretically?

So far, we have the monographic entropy ($\mathrm{H}=4.1908$ bits) and the digraph entropy ($\mathrm{H}=8.3542$ bits).

But the digraph entropy is flattened - doesn't know about rows and columns:

$$
H(x, y)=-\sum_{i, j} p_{i j} \ln p_{i j}
$$

Let's try to capture something with more structure. The conditional entropy is the expected (average) entropy of the second character, given the first:

$$
\begin{aligned}
H(y \mid x) & =-\underbrace{\sum_{i} p_{i}}_{\begin{array}{c}
\text { expectation } \\
\text { over rows }
\end{array}} \cdot \underbrace{\sum_{j} \frac{p_{i j}}{p_{i}} \ln \frac{p_{i j}}{p_{i} .}}_{\begin{array}{c}
\text { entropy of } \\
\text { one row }
\end{array}}=-\sum_{i, j} p_{i j} \ln \frac{p_{i j}}{p_{i} .} \\
& =H(x, y)+\sum_{i}\left(\sum_{j} p_{i j}\right) \ln p_{i} . \\
& =H(x, y)-H(x)
\end{aligned}
$$

So the conditional entropy follows directly from the monographic and digraphic entropies!

In fact there are a bunch of relations, all easy to prove:

$$
H(x)-H(x \mid y)=H(y)-H(y \mid x) \equiv I(x, y) \quad 0.0266 \text { bits }
$$

$$
I(x, y)=\sum_{i, j} p_{i j} \ln \left(\frac{p_{i j}}{p_{i} \cdot p_{\cdot j}}\right) \quad \begin{array}{r}
\text { Proof that mutual information always posit } \\
H(y \mid x)-H(y)=-\sum_{i, j} p_{i j} \ln \frac{p_{i j} / p_{i} .}{p_{\cdot j}}
\end{array}
$$

Mutual information measures the amount of dependency between two R.V.'s: Given the value of one, how much (measured in bits) do we know about the other.

You might wonder if a quantity as small as 2.7 centibits is ever important. The answer is yes: It is a signal that you could start to detect in $1 / .027 \sim 40$ characters, and easily detect in ~ 100.

$$
\begin{aligned}
& =\sum_{i, j} p_{i j} \ln \frac{p_{\cdot j} p_{i} \cdot}{p_{i j}} \\
& \leq \sum_{i, j} p_{i j}\left(\frac{p \cdot j p_{i \cdot}}{p_{i j}}-1\right) \\
& =\sum_{i, j} p_{i \cdot p} \cdot p_{\cdot j}-\sum_{i, j} p_{i j} \\
& =1-1=0
\end{aligned}
$$

Mutual information has an interesting interpretation in game theory (or betting)
side information:
Outcome i with probability p_{i} is what you can bet on at odds $1 / p_{i}$ But you also know the value of another feature j that is partially informative In other words, you know the matrix p_{ij} and it's neither diagonal (perfect prediction) nor rank-one (complete independence)
example: i is which horse is running, j is which jockey is riding
What is your best betting strategy?
$b_{i j}$ fraction of assets you bet on i when the side info is j

$$
\sum_{i} b_{i j}=1, \quad 0 \leq j \leq J-1
$$

maximize the return on assets per play:

$$
W=\left\langle\ln \frac{b_{i j}}{p_{i}}\right\rangle=\sum_{i, j} p_{i j} \ln \frac{b_{i j}}{p_{i}}
$$

Secretariat	0.94	0.01	0.95
old nag	0.04	0.01	0.05
	0.98	0.02	

we can do this by Lagrange multipliers, maximizing the Lagrangian

$$
\mathcal{L}=\sum_{i, j} p_{i j} \ln \frac{b_{i j}}{p_{i} .}-\sum_{j} \lambda_{j}\left(\sum_{i} b_{i j}-1\right)
$$

$$
\begin{aligned}
& \mathcal{L}=\sum_{i, j} p_{i j} \ln \frac{b_{i j}}{p_{i}}-\sum_{j} \lambda_{j}\left(\sum_{i} b_{i j}-1\right) \\
& 0=\frac{\partial \mathcal{L}}{\partial b_{i j}}=\frac{p_{i j}}{b_{i j}}-\lambda_{j} \quad \begin{array}{l}
\text { This is the famous "proportional betting" formula } \\
\text { or "Kelly's formula", first derived by Kelly, a } \\
\text { colleague of Shannon, in 1956. You should bet } \\
\text { in linear proportion to the probabilities } \\
\text { conditioned on any side information. }
\end{array} \\
& b_{i j}=\frac{p_{i j}}{\lambda_{j}}=\frac{p_{i j}}{p_{\cdot j}} \quad \begin{array}{l}
\text { (} \left.\quad \begin{array}{l}
p_{i j} \\
p_{i \cdot p \cdot j}
\end{array}\right)=I(x, y)
\end{array}
\end{aligned}
$$

So your expected gain is the mutual information between the outcome and your side information!

So, e.g., 0.1 nats of mutual information means $\approx 10 \%$ return on capital for each race. You can get rich quickly with that!

Finally, the Kullback-Leibler distance is an information theoretic measure of how different are two distributions ("distance" from one to the other).
A.k.a. "relative entropy".

$$
D(\mathbf{p} \| \mathbf{q}) \equiv \sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}}
$$

But at least it's always positive!
Notice that it's not symmetric. It also doesn't have a triangle inequality. So it's not a metric in the mathematical sense.

$$
-D(\mathbf{p} \| \mathbf{q})=\sum_{i} p_{i} \ln \left(\frac{q_{i}}{p_{i}}\right) \leq \sum_{i} p_{i}\left(\frac{q_{i}}{p_{i}}-1\right)=1-1=0
$$

Interpretations:

1. It's the extra length needed to compress \mathbf{p} with a code designed for \mathbf{q}

$$
-\sum_{i} p_{i} \ln q_{i}=H(\mathbf{p})+\sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}} \equiv H(\mathbf{p})+D(\mathbf{p} \| \mathbf{q})
$$

2. It's the average log odds (per character) of rejecting the (false) hypothesis that you are seeing q when you are (actually) seeing p

$$
\star \mathscr{L}=\frac{p(\text { Data } \mid \mathbf{p})}{p(\text { Data } \mid \mathbf{q})}=\prod_{\text {data }} \frac{p_{i}}{q_{i}}
$$

3. It's your expected capital gain when you can estimate the odds of a fair game better than the person offering (fair) odds, and when you bet by Kelly's formula

$$
\begin{aligned}
W & =\left\langle\ln \left(b_{i} o_{i}\right)\right\rangle=\sum_{i} p_{i} \ln \left(b_{i} o_{i}\right) \\
b_{i} & =q_{i} \\
o_{i} & =1 / r_{i}
\end{aligned}
$$

so

$$
W=\left\langle\ln \left(b_{i} o_{i}\right)\right\rangle=\sum_{i} p_{i} \ln \frac{q_{i}}{r_{i}}=D(\mathbf{p} \| \mathbf{r})-D(\mathbf{p} \| \mathbf{q})
$$

Turns out that if the house keeps a fraction $(1-f)$, the requirement is

$$
D(\mathbf{p} \| \mathbf{r})-D(\mathbf{p} \| \mathbf{q})>-\ln f
$$

Betting is a competition between you and the bookie on who can more accurately estimate the true odds, as measured by Kullback-Leibler distance.

