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If we generalize to contingency tables other than 2x2,
Dirichlet is the relevant conjugate distribution to Multinomial

P (n1, n2, . . . |N, q1, q2, . . .) =
N !

n1!n2! · · ·
qn11 q

n2
2 · · · , (

X
ni = N,

X
qi = 1)

Multinomial distribution (you can derive it by “repeated binomial” or combinatorics as we did earlier):

Conjugate distribution, using conjugate priors:

P (q1, q2, . . . |N,n1, n2, . . .) ∝ qn1+α11 qn2+α22 · · ·

P (q1, q2, . . . |N, n1, n2, . . .) =
Γ(N + α1 + 1 + α2 + 1 + · · · )
Γ(n1 + α1 + 1)Γ(n2 + α2 + 1) · · ·

qn1+α11 qn2+α22 · · ·

Normalization turns out to be:

Rather amazingly, there is a simple way to generate a (non-independent) set 
of q deviates from an independent set of Gamma deviates: 

qi = yi

.X
i

yi

(In fact, in the case with I=2, this is how Beta deviates [previous slide]  are usually generated.)

the Dirichlet distribution

yi ∼ Gamma(ni + αi + 1), p(y) =
yni+αie−y

Γ(ni + αi + 1)
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So let’s reanalyze assuming that the condition (column) 
marginals were fixed by the protocol, and we Bayes-
sample the row probabilities:

>> table = [8 3; 16 26]

table =

8     3

16    26

>> marfix = sum(table,1)'

marfix =

24

29

>> marvar = sum(table,2)'

marvar =

11    42

>> gammas = gamrnd(marvar+1,1)

gammas =

12.1000   44.5735

>> q = gammas ./ sum(gammas)

q =

0.2135    0.7865

>> qmat = repmat(q,[size(table,2),1])

qmat =

0.2135    0.7865

0.2135    0.7865

>> tabout = mnrnd(marfix,qmat)'

tabout =

4     8

20    21

(You’ll never believe my encapsulated function unless I go through an example!)

column marginals (transposed)

row marginals (transposed)

~Gamma(ni+1)

generated (random) row probabilities qi

finally, we generate multinomial deviates for each 
column, using the generated row probabilities

The reason everything is done in the transpose is 
because of the way that Matlab’s mnrnd function 
expects its arguments to be shaped.  Sorry about 
that!

263

168



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

In case it’s not obvious,  sampling over q is the same as marginalizing 
over q:

We generate a deviate pair (f,q) by choosing a q, and then, independently, 
an f given q, so 

p(f, q) = p(q) p(f |q)

We then ignore q, so our f is drawn from the distribution

which is the same as the desired marginalization

p(f) =
R
p(f, q) dq =

R
p(q) p(f |q) dq

(This is so close to self-evident, that I’m not sure that the proof adds anything!)

p(f) =
R
p(f |q) p(q) dq
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function tabout = tabnullsamp(tabin)
marfix = sum(tabin,1)';
marvar = sum(tabin,2)';
q = gamrnd(marvar+1,1);
qmat = repmat(q./sum(q),[size(tabin,2),1]);
tabout = mnrnd(marfix,qmat)';

wald(table)
ans =

2.0542

tabnullsamp(table), tabnullsamp(table)
ans =

6     7
18    22

ans =
7     9

17    20

wald(tabnullsamp(table))
ans =

1.0392

samps = arrayfun(@(x) wald(tabnullsamp(table)), 1:30000);
hist(samps,-4:.05:4)
cdfplot(samps)

Encapsulate the sampling process into a function.
Then, generate a bunch of samples and look at their Wald 
statistics.
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pval = numel(samps(samps>=wald(table)))/numel(samps)
pvaltt = (numel(samps(samps>=wald(table)))+numel(samps(samps<= -wald(table))) )/numel(samps)
pval =

0.022967
pvaltt =

0.040067

There are still discreteness effects (after all, these are integer tables), but they are 
less troubling:

one-tail vs. two-tail now much more reasonble

This is probably the most honest answer that we can get 
for the significance of this particular contingency table.
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Let’s reanalyze the maternal drinking data using the same methodology,
but (as we did before) with the Pearson statistic:

function chis = pearson(table)
nhtable = sum(table,2)*sum(table,1)/sum(sum(table));
chis = sum(sum((table-nhtable).^2./nhtable));

table = [17066 14464 788 126 37; 48 38 5 1 1]'
table =

17066          48
14464          38
788           5
126           1
37           1

pearson(table)
ans =

12.082

samps = arrayfun(@(x) pearson(tabnullsamp(table)), 1:10000);
hist(samps,0:0.25:90)

transpose to make the unfixed marginals be the rows, as before  

the (unrealistic, but don’t worry now) scenario is something like: 
case-control study where malformation-present came from 
hospitals, malformation-absent came from a door-to-door survey

columns are the “conditions”
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pval = numel(samps(samps>=pearson(table)))/numel(samps)
pval =

0.0408

Giving the results

Why is this less significant than the difference-of-means analysis, which gave 
p=.015 or .011 (mean or square-mean)?

Because here we didn’t use the fact that the factors were ordinal and 
quantitatively related.  By virtue of using that information, and thereby 
“compressing” the rows, the difference-of-means was more powerful.
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Actually, it seems likely that this data was a cross-sectional study with no fixed 
marginals.  If so, a better sampling of the null hypothesis would be:

function tabout = tabnullsamp2(tabin)
marcol = sum(tabin,1);
marrow = sum(tabin,2);
ntot = sum(marcol);
q = gamrnd(marcol+1,1);
q = q./sum(q);
p = gamrnd(marrow+1,1);
p = p./sum(p);
pq = p * q;
tabout = reshape(mnrnd(ntot,pq(:)'),size(tabin));

samps = arrayfun(@(x) pearson(tabnullsamp2(table)), 1:10000);
hist(samps,0:0.25:90)
pval = numel(samps(samps>pearson(table)))/numel(samps)
pval =

0.0445

This would probably the “honest” answer if the table 
were nominal, not ordinal.  But, as said, since it is 
ordinal, the previous analysis using difference of 
means is more powerful.

You now know all you need to know about 
contingency tables – and much more than 
almost everyone who uses them!

different from previous: protocol matters!
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MAAACRSVKGLVAVITGGASGLGLATAERLVGQGASAVLLDLPNSG
GEAQAKKLGNNCVFAPADVTSEKDVQTALALAKGKFGRVDVAVNCA
GIAVASKTYNLKKGQTHTLEDFQRVLDVNLMGTFNVIRLVAGEMGQN
EPDQGGQRGVIINTASVAAFEGQVGQAAYSASKGGIVGMTLPIARDL
APIGIRVMTIAPGLFGTPLLTSLPEKVCNFLASQVPFPSRLGDPAEYAH
LVQAIIENPFLNGEVIRLDGAIRMQP*

261 characters, each in {A-Z} minus {BJOUXZ} (20 amino acids)

As functioning machines, proteins have a 
somewhat modular three-dimensional (tertiary) 
structure.  But the [more-or-less] complete 
instructions for making a protein are a one-
dimensional sequence of characters representing 
amino acids.

Information Theory Characterization of Distributions

lactate dehydrogenase, 
showing alpha helices and beta 
sheets For example:

(I picked this randomly in the human genome.  A sequence search shows it to be 
“hydroxysteroid (17-beta) dehydrogenase “.)
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How many proteins of length 261 are there?  20261 ?  Yes, in a sense, but…

Shannon’s key observation is that, if the characters in a message occur with 
unequal distribution pi, then, for long messages, there is quite a sharp divide 
between rather probable messages and extremely improbable ones. Lets 
estimate the number of probable ones.

(The log2 of this number is the information content of the message, in bits.)

We estimate as follows number of shuffled messages

number of rearrangements of 
identical symbols i

entropy in nats

If you take all logs base 2, you get entropy in bits.
1 nat = 1.4427 bits.
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Evidently positive for all p’s.

Minimum value zero when a single pi=1.

Maximum when all the pi’s are equal:

L = −
X
i

pi ln pi + λ

ÃX
i

pi − 1
!

0 =
∂L
∂pj

= − ln pj − 1 + λ

⇒ ln pj = λ− 1 = constant

max(H) = lnN

H(p) = −
NX
i=1

pi ln pi
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Interpretations of the entropy of a distribution:

1.  It’s the (binary) message length of the maximally compressed message.

Because, just send a binary serial number among all the probable
messages.  (And do something else for the improbable ones –
which will never happen and negligibly affect the mean length!)

2. It’s the expected log cut-down in the number of remaining hypotheses 
with a feature distributed as p, if we do an experiment that measures i

This is a figure of merit for experiments if, by repeated 
experiments, we want to get the number of remaining hypotheses 
down to 1.

3.  It’s the e-folding (or doubling) rate of capital for a fair game about 
which you have perfect predictive information.

payoff (odds)

(This seems fanciful, but will make more sense when we discuss 
the case of partial predictive information.)

hln pii =
P

i pi ln pi = −H(p)

H(p) = −
X
i

pi ln pi
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load 'aadist_mono.txt';
mono = aadist_mono ./ sum(aadist_mono(:));
plot(mono(1:26),'or')

Example: what is the distribution of amino acids in human proteins?
(file on course web site)
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plot(sort(mono(1:26),'descend'),'ob')

Plot distribution in descending order.  Also calculate entropy:

entropy2 = @(x) sum(-x(:).*log(x(:)+1.e-99))/log(2);

h2bound = log(20)/log(2)
h2mono = entropy2(mono)
h2bound =

4.3219
h2mono =

4.1908

maximum entropy that 20 characters could have

actual (single peptide) entropy of the AA’s 

Notice that we flatten any 
structure in x when 
calculating the entropy.


