CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin
Lecture 21

If we generalize to contingency tables other than 2×2, Dirichlet is the relevant conjugate distribution to Multinomial

Multinomial distribution (you can derive it by "repeated binomial" or combinatorics as we did earlier):
$P\left(n_{1}, n_{2}, \ldots \mid N, q_{1}, q_{2}, \ldots\right)=\frac{N!}{n_{1}!n_{2}!\cdots} q_{1}^{n_{1}} q_{2}^{n_{2}} \cdots, \quad\left(\sum n_{i}=N, \sum q_{i}=1\right)$
Conjugate distribution, using conjugate priors:
$P\left(q_{1}, q_{2}, \ldots \mid N, n_{1}, n_{2}, \ldots\right) \propto q_{1}^{n_{1}+\alpha_{1}} q_{2}^{n_{2}+\alpha_{2}} \ldots \quad$ the Dirichlet distribution
Normalization turns out to be:
$P\left(q_{1}, q_{2}, \ldots \mid N, n_{1}, n_{2}, \ldots\right)=\frac{\Gamma\left(N+\alpha_{1}+1+\alpha_{2}+1+\cdots\right)}{\Gamma\left(n_{1}+\alpha_{1}+1\right) \Gamma\left(n_{2}+\alpha_{2}+1\right) \cdots} q_{1}^{n_{1}+\alpha_{1}} q_{2}^{n_{2}+\alpha_{2}} \ldots$

Rather amazingly, there is a simple way to generate a (non-independent) set of \boldsymbol{q} deviates from an independent set of Gamma deviates:
$y_{i} \sim \operatorname{Gamma}\left(n_{i}+\alpha_{i}+1\right), \quad p(y)=\frac{y^{n_{i}+\alpha_{i}} e^{-y}}{\Gamma\left(n_{i}+\alpha_{i}+1\right)} \quad q_{i}=y_{i} / \sum_{i} y_{i}$
(In fact, in the case with $I=2$, this is how Beta deviates [previous slide] are usually generated.)

So let's reanalyze assuming that the condition (column)
marginals were fixed by the protocol, and we Bayessample the row probabilities:
(You'll never believe my encapsulated function unless I go through an example!)

```
>> table =[ll 3; 16 26]
table=
marfix = sumtable, 1)' column marginals (transposed)
marfix=
    24
    29
>> marvar = sumtabl e, 2)' row marginals (transposed)
marvar =
    1142
>>gammas = gamrnd(marvar +1, 1) ~Gamma( }\mp@subsup{n}{\textrm{i}}{+}+1
gammas =
    12.1000 44.5735
>q = gammas . / sum gammas) generated (random) row probabilities qi
q=
    0. 2135 0.7865
> qrat = repmat ( q, [size(tabl e, 2), 1])
qumt =
tabout =
    4
    20 21
```

o. 2135
0. 7865
o. 2135
o. 7865
\rightarrow tabout $=$ mmrnd(marfi x, quat) '
tabout $=$
48
2021

```
            3
```

 3
 16 26
    ```
    16 26
```

```
8 16
                                    36
```

finally, we generate multinomial deviates for each column, using the generated row probabilities

The reason everything is done in the transpose is because of the way that Matlab's mnrnd function expects its arguments to be shaped. Sorry about that!

| | C_{0} | C_{1} |
| :---: | :---: | :---: |
| f_{0} | 8 | 3 |
| f_{1} | 16 | 26 |

In case it's not obvious, sampling over q is the same as marginalizing over q :

We generate a deviate pair (f, q) by choosing a q, and then, independently, an f given q, so

$$
p(f, q)=p(q) p(f \mid q)
$$

We then ignore q, so our f is drawn from the distribution

$$
p(f)=\int p(f, q) d q=\int p(q) p(f \mid q) d q
$$

which is the same as the desired marginalization

$$
p(f)=\int p(f \mid q) p(q) d q
$$

(This is so close to self-evident, that l'm not sure that the proof adds anything!)

Encapsulate the sampling process into a function. Then, generate a bunch of samples and look at their Wald statistics.

```
function tabout = tabnul/samp(tabin)
marfix = sum(tabi n, 1)';
marvar = sum(tabin, 2)',
q = gamm nd( mar var +1, 1),
qmat = repmat(q. /sum q), [size(tabin, 2), 1]),
tabout = mmrnd(marfix, qmat)';
wal d(tabl e)
ans =
    2. }054
t abnul I samp(table), t abnul I samp(tabl e)
ans =
    6 7
    18 22
ans
    7 9
    17 20
wal d(tabnul I samp(tabl e))
ans =
    1.0392
samps = arrayfun( @ x) wal d(tabnul I samp(tabl e)), 1: 30000);
hi st (samps, - 4: . 05: 4)
cdf pl ot (samps)
```

There are still discreteness effects (after all, these are integer tables), but they are less troubling:


```
pval = nurrel (samps(samps>ewal d(tabl e)))/ nurrel (samps)
pval tt = ( numel (samps(samps>mal d(tabl e)) ) thumel (samps(samps<e - wal d(tabl e))) )/ numel (samps)
pval =
    0. 022967
pvaltt=
    0.040067
This is probably the most honest answer that we can get for the significance of this particular contingency table.
```

| | C_{0} | C_{1} |
| :---: | :---: | :---: |
| f_{0} | 8 | 3 |
| f_{1} | 16 | 26 |

Let's reanalyze the maternal drinking data using the same methodology, but (as we did before) with the Pearson statistic:

```
function chis = pearson(table)
nhtable = sumtable, 2)*sumtable, 1)/sum sum table));
chis = sumesum(table- nhtable). -2. I nhtable));
table e=[lllo66 14464 788 126 37; 48 38 5 1 1]'
table =
\begin{tabular}{lll}
17066 & 48 & transpose to make the unfixed marginals be the rows, as before \\
14464 & 38
\end{tabular}
    14464 38
        788 5
        126 1
        37 1
pearson(tabl e)
ans =
        12. }08
samps = arrayfun(@x) pearson(tabnul lsamp(tabl e)), 1: 10000);
hi st(samps, 0: 0. 25: 90)
```

Table 1
Maternal drinking and congenital malformations

| | Alcohol consumption
 (average no. of drinks/day) | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Malformation | 0 | <1 | $1-2$ | $3-5$ | ≥ 6 |
| Absent | 17,066 | 14,464 | 788 | 126 | 37 |
| Present | 48 | 38 | 5 | 1 | 1 |

Source: Graubard and Korn (1987).

Giving the results

pval $=$ numel (samps(samps>-pearson(table)))/ nurrel (samps)
pval
o. 0408

Why is this less significant than the difference-of-means analysis, which gave $p=.015$ or .011 (mean or square-mean)?

Because here we didn't use the fact that the factors were ordinal and quantitatively related. By virtue of using that information, and thereby "compressing" the rows, the difference-of-means was more powerful.

Actually, it seems likely that this data was a cross-sectional study with no fixed marginals. If so, a better sampling of the null hypothesis would be:

```
function tabout = tabnul/samp2(tabin)
marcol = sumtabin, 1);
marrow = sumtabin, 2);
nt ot = sum marcol);
q = gam nd( marcol +1, 1);
q = q. / sum q);
p = gam nd( marrow+1, 1);
p = p./sum(p);
pq=p * q;
tabout = reshape(mrnd(nt ot,pq(:)'), size(tabin));
```

Table 1
Maternal drinking and congenital malformations

| | Alcohol consumption
 (average no. of drinks/day) | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Malformation | 0 | <1 | $1-2$ | $3-5$ | ≥ 6 |
| Absent | 17,066 | 14,464 | 788 | 126 | 37 |
| Present | 48 | 38 | 5 | 1 | 1 |

Source: Graubard and Korn (1987).
samps = arrayfun((x) pearson(tabnul I samp2(table)), 1: 10000);
hi st (samps, 0: 0. 25: 90)
pval $=$ numel (samps(samps>pearson(table)))/ nurrel (samps)
pval =
0. $0445 \longleftarrow$ different from previous: protocol matters!

This would probably the "honest" answer if the table were nominal, not ordinal. But, as said, since it is ordinal, the previous analysis using difference of means is more powerful.

You now know all you need to know about contingency tables - and much more than almost everyone who uses them!

Information Theory Characterization of Distributions

As functioning machines, proteins have a somewhat modular three-dimensional (tertiary) structure. But the [more-or-less] complete instructions for making a protein are a onedimensional sequence of characters representing amino acids.

lactate dehydrogenase, showing alpha helices and beta sheets
For example:
261 characters, each in $\{A-Z\}$ minus $\{B J O U X Z\}$ (20 amino acids)
MAAACRSVKGLVAVITGGASGLGLATAERLVGQGASAVLLDLPNSG GEAQAKKLGNNCVFAPADVTSEKDVQTALALAKGKFGRVDVAVNCA GIAVASKTYNLKKGQTHTLEDFQRVLDVNLMGTFNVIRLVAGEMGQN EPDQGGQRGVIINTASVAAFEGQVGQAAYSASKGGIVGMTLPIARDL APIGIRVMTIAPGLFGTPLLTSLPEKVCNFLASQVPFPSRLGDPAEYAH LVQAIIENPFLNGEVIRLDGAIRMQP*
(I picked this randomly in the human genome. A sequence search shows it to be "hydroxysteroid (17-beta) dehydrogenase ".)

How many proteins of length 261 are there? 20^{261} ? Yes, in a sense, but...

Shannon's key observation is that, if the characters in a message occur with unequal distribution p_{i}, then, for long messages, there is quite a sharp divide between rather probable messages and extremely improbable ones. Lets estimate the number of probable ones.
(The $\log _{2}$ of this number is the information content of the message, in bits.)
We estimate as follows

$$
\begin{aligned}
& B \ln 2 \approx M \ln \left(\frac{M}{e}\right)-\sum_{i}\left(M p_{i}\right) \ln \left(\frac{M p_{i}}{e}\right) \\
& =M \ln \left(\frac{M}{e}\right)-M\left(\sum_{i} p_{i}\right) \ln \left(\frac{M}{e}\right)-M \sum_{i} p_{i} \ln p_{i} \\
& \equiv M H(\mathbf{p}) \\
& 2^{B} \approx \frac{M!}{\prod_{i}\left(M p_{i}\right)!} \longleftarrow \quad \text { number of shuffled messages } \\
& \text { If you take all logs base 2, you get entropy in bits. } \\
& 1 \text { nat }=1.4427 \text { bits } \text {. }
\end{aligned}
$$

$$
H(\mathbf{p})=-\sum_{i=1}^{N} p_{i} \ln p_{i}
$$

Evidently positive for all p's.
Minimum value zero when a single $p_{i}=1$.
Maximum when all the p_{i} 's are equal:

$$
\begin{aligned}
\mathcal{L} & =-\sum_{i} p_{i} \ln p_{i}+\lambda\left(\sum_{i} p_{i}-1\right) \\
0=\frac{\partial \mathcal{L}}{\partial p_{j}} & =-\ln p_{j}-1+\lambda \\
\Rightarrow \ln p_{j} & =\lambda-1=\mathrm{constant} \\
\max (H) & =\ln N
\end{aligned}
$$

$H(\mathbf{p})=-\sum_{i} p_{i} \ln p_{i} \quad$ Interpretations of the entropy of a distribution:

1. It's the (binary) message length of the maximally compressed message.

Because, just send a binary serial number among all the probable messages. (And do something else for the improbable ones which will never happen and negligibly affect the mean length!)
2. It's the expected log cut-down in the number of remaining hypotheses with a feature distributed as \mathbf{p}, if we do an experiment that measures i

$$
\left\langle\ln p_{i}\right\rangle=\sum_{i} p_{i} \ln p_{i}=-H(\mathbf{p})
$$

This is a figure of merit for experiments if, by repeated experiments, we want to get the number of remaining hypotheses down to 1.
3. It's the e-folding (or doubling) rate of capital for a fair game about which you have perfect predictive information.

$$
\text { payoff (odds) }\left\langle o_{i}\right\rangle=p_{i} o_{i}=1
$$

(This seems fanciful, but will make more sense when we discuss the case of partial predictive information.)

Example: what is the distribution of amino acids in human proteins?

```
I oad ' aadi st_mono. txt'; }\longleftarrow\mathrm{ (file on course web site)
mono = aadi st_mono ./ sumfaadist_mono(:));
pl ot ( rono( 1: 26),' or' )
```


Alanine
Arginine
Asparagine
Aspartic acid (Aspartate)
Cysteine
Glutamine
Glutamic acid (Glutamate) Glycine
Histidine
Isoleucine
Leucine
Lysine
Methionine
Phenylalanine
Proline
Serine
Threonine
Tryptophan
Tyrosine
Valine

Plot distribution in descending order. Also calculate entropy:

