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Different “standard methods” applied to this data get 
p-values ranging from 0.005 to 0.190. (Agresti 1992)

Fisher Exact Test done combinatorially is not a viable 
option (both because of computational workload and 
because we only derived the 2x2 case!)

So we’ll try the (equivalent) permutation test.

To learn more, let’s play with the first contingency table we looked at:
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table = [17066 14464 788 126 37; 48 38 5 1 1]
table =

17066       14464         788         126          37
48          38           5           1           1

pearson(table)
ans =

12.0821

[row col] = ndgrid(1:size(table,1),1:size(table,2));
d = [];
for k=1:numel(table); d = cat(1,d,repmat([row(k),col(k)],table(k),1)); end;
size(d)
ans =

32574
2

tablecheck = accumarray(d,1,size(table))
tablecheck =

17066       14464         788         126          37
48          38           5           1           1

gen = @(x) pearson( accumarray([ d(randperm(size(d,1)),1) d(:,2)],1,size(table)));
gen(1)
ans =

1.3378

perms = arrayfun(gen, 1:1000);

Expand the table and generate 1000 permutations
(Now takes ~1 min.  Go figure out how to do the permutation test without expanding all the data!)

Yes, has the dimensions we expect.

And we can reconstruct the original table.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

hist(perms,(0:.5:40))

cdfplot(perms)

pvalgt = numel(perms(perms>pearson(table)))/numel(perms)
pvalge = numel(perms(perms>=pearson(table)))/numel(perms)
pvalgt =

0.0380
pvalge =

0.0380

pearson(table)
ans =

12.0821

our answer: the p-value

Two questions remain:
1. How good or bad an approximation was it to hold all marginals fixed?
2. Is there a more powerful statistical test for this data?
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The more powerful statistical approach to the maternal drinking 
contingency table is to recognize that the table is ordinal, not just 
nominal

• Choose a test statistic that actually reflects your hypothesis!
– the columns are ordered by an increasing  independent variable
– “more drinks lead to more abnormalities”
– the obvious statistic is “difference of mean number of drinks between 

the two rows”
– if a threshold effect is plausible, might also try “difference of mean of 

square”
• we will discuss multiple hypothesis correction

• With this different statistic, we do a permutation test as before
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table = [17066 14464 788 126 37; 48 38 5 1 1]
sum(table(:))
table =

17066       14464         788         126          37
48          38           5           1           1

ans =
32574

drinks = [0 0.5 1.5 4. 6.];
drinksq = drinks.^2;
norm = sum(table,2);
mudrinks = (table * drinks')./norm
mudrinksq = (table * drinksq')./norm
mudrinks =

0.2814
0.39247

mudrinksq =
0.26899
0.78226

diff = [-1 1] * mudrinks
diffsq = [-1 1] * mudrinksq
diff =

0.11108
diffsq =

0.51327

Input the table and display the means and their differences:

These are our chosen “statistics”.
The question is: Are either of them 
statistically significant?  We’ll use the 
permutation test to find out.

reasonable quantification of the ordinal 
categories:  exactness isn’t important, 
since we get to define the statistic
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[row col] = ndgrid(1:2,1:5)
row =

1     1     1     1     1
2     2     2     2     2

col =
1     2     3     4     5
1     2     3     4     5

d = [];
for k=1:numel(table); d = [d; repmat([row(k),col(k)],table(k),1)]; end;

size(d)
ans =

32574           2

accumarray(d,1,[2,5])
ans =

17066       14464         788         126          37
48          38           5           1           1

mean(drinks(d(d(:,1)==2,2)))
ans =

0.39247

Expand table back to dataset of length 32574:

Yes, has the dimensions we expect.

And we can reconstruct the original table.

And we get the right mean, so it looks like 
we are good to go…

This tells each cell its row and column number
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diffmean = @(d) mean(drinks(d(d(:,1)==2,2))) - mean(drinks(d(d(:,1)==1,2)));
diffmean(d)
ans =

0.11108
diffmean([d(randperm(size(d,1)),1) d(:,2)])
ans =

0.014027
perms = arrayfun(@(x) diffmean([d(randperm(size(d,1)),1) d(:,2)]), [1:1000]);

pval = numel(perms(perms>diffmean(d)))/numel(perms)
pval =

0.015
hist(perms,(-.15:.01:.3))

Compute the statistic for the data and for 1000 permuations:
As before, the idea is to sample from the null hypothesis (no association) while keeping the 
distributions of each single variable unchanged.  Do this by permuting a label that is irrelevant 
in the null hypothesis.

So, as a p-value, the association is now 
more than twice as significant as when 
we ignored the column ordering. We 
were throwing away useful information!

Reminder: p-value is a false positive
rate.

Try one permutation just to see it work.
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diffmeansq = @(d) mean(drinksq(d(d(:,1)==2,2))) - mean(drinksq(d(d(:,1)==1,2)));
diffmeansq(d)
ans =

0.51327
permsq = arrayfun(@(x) diffmeansq([d(randperm(size(d,1)),1) d(:,2)]), [1:1000]);
pval = numel(permsq(permsq>diffmeansq(d)))/numel(permsq)
pval =

0.011
hist(permsq,(-.3:.05:1))

Same analysis for the squared-drinks statistic:

• Should we apply a multiple hypothesis 
correction to both pval’s (mult x 2) ? 
Probably not.

– mean and mean-of-squares highly 
correlated, and

– the previous result was significant
– we’re not just shopping uniform p-values

• But, if your data can stand it, Bonferroni
is the gold standard

• Is there a principled way to do multiple 
hypothesis correction with highly 
correlated tests?
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diffmean(d(randsample(size(d,1),size(d,1),true),:))
ans =

0.20703

resamp = arrayfun(@(x) diffmean(d(randsample(size(d,1),size(d,1),true),:)), [1:1000]);

bias = mean(resamp) - diffmean(d)
resamp = resamp - bias;
pval = numel(resamp(resamp<0))/numel(resamp)
bias =

0.0014876
pval =

0.078

hist(resamp,[-.1:.01:.5])

The permutation test is not bootstrap resampling! Permutation test breaks the causal 
connection, giving the null hypothesis. Bootstrap doesn’t, but tells us how much variation in 
the signal one might see in repeated identical experiments.  Bootstrap might possibly be 
useful in understanding why another experiment didn’t see the effect (false negative).

Try one resample just to see it work.

If this is large, we should worry.

Now the “pval” is a false negative rate:  
How often would a repetition of the 
experiment show an effect with 
negative difference of the means?

So:  Bootstrap resampling and 
sampling from the null hypothesis (e.g. 
by permutation) are completely 
different things!

diffmean(d)
= 0.11108

This isn’t really a pval. (No null hypothesis.)
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Permutation Test Bootstrap

1.5%
8%

false positive rate,
i.e., significance

false negative rate,
i.e. for other similar experiments

Distributions of the difference of mean drinks:
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Summary: permutation tests (a.k.a. Fisher Exact) are easy to do and 
useful. But, if numbers of counts are small, these tests are less “exact”
than they pretend to be, for several related reasons:

• Because your data value always lands on
a tie, it’s either over-conservative or
under-conservative

– some people split the difference
• Because the negative of your data value

(almost) never lands on a tie, the two-tailed
test is fragile

– might be virtually the same as one-tailed,
as in our example

– or might be hugely (>> x2) different
• In fact, the whole construct is fragile to irrelevant “number theoretical coincidences” about 

the values of the marginals
– adding one data point, or using a slightly different statistic, could radically change p-values

• We’ve already seen what the fundamental problem is
– real protocols don’t fix both sets of marginals
– Fisher’s elegant elimination of the nuisance parameters p and/or q is a trap

• We actually need to estimate a distribution for the nuisance parameters (p’s and/or q’s) 
and marginalizing over them

– this makes us Bayesians in a non-Bayesian (p-value) world
– but we’ve already seen examples of this (“posterior predictive p-value”)
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How shall we estimate the nuisance parameters p and/or q?
Remember “conjugate distributions”?  As before, we want to estimate 
parameters from observed counts. Beta is conjugate to Binomial:

P (q|N, n) ∝ qn(1− q)N−nP (q) Bayes, with prior.

A “conjugate prior” is one that preserves the functional form of the distribution.

P (q) ∝ qα(1− q)β

So the conjugate distribution is

mean =
n+ α+ 1

N + α+ β + 1
var =

(n+ α+ 1)(N − n+ β + 1)

(N + α+ β + 2)2(N + α+ β + 3)

This Beta distribution has

Matlab, Mathematica, and NR3 all have methods for generating random Beta deviates

( =  = 0 is a perfectly good choice: flat prior on q)

P (q|N, n) = qn+α(1− q)N−n+βR 1
0
qn+α(1− q)N−n+βdq

=
Γ(N + α + β + 2)

Γ(n+ α + 1)Γ(N − n + β + 1)
qn+α(1 − q)N−n+β

∼ Beta(n+ α + 1, N − n + β + 1)

P (n|N, q) =
µ
N

n

¶
qn(1− q)N−n


