CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011
The University of Texas at Austin

Lecture 2

Example: The Monty Hall or Let's Make a Deal Problem

- Three doors

- Car (prize) behind one door
- You pick a door, but don't open it yet
- Monty then opens one of the other doors, always revealing no car (he knows where it is)
- You now get to switch doors if you want
- Should you?
- Most people reason: Two remaining doors were equiprobable before, and nothing has changed. So doesn't matter whether you switch or not.
- Marilyn vos Savant ("highest IQ person in the world") famously thought otherwise (Parade magazine, 1990)
- No one seems to know or care what Monty Hall thought!
- he is alive at age 89
- his daughter is Joanna Gleason, who starred in Sondheim's "Into the Woods"

So you should always switch: doubles your chances!

Exegesis on Monty Hall

\star Very important example! Master it.

* $P\left(H_{i}\right)=\frac{1}{3}$ is the "prior probability" or "prior"
* $P\left(H_{i} \mid O 3\right)$ is the "posterior probability" or "posterior"
* $P\left(O 3 \mid H_{i}\right)$ is the "evidence factor" or "evidence"
\star Bayes says posterior \propto evidence \times prior

Commutivity/Associativity of Evidence
$P\left(H_{i} \mid D_{1} D_{2}\right)$ desired
We see D_{1} :
$P\left(H_{i} \mid D_{1}\right) \propto P\left(D_{1} \mid H_{i}\right) P\left(H_{i}\right)$
Then, we see D_{2} :

$P\left(H_{i} \mid D_{1} D_{2}\right) \propto P\left(D_{2} \mid H_{i} D_{1}\right) P\left(H_{i} \mid D_{1}\right) \longleftarrow$ this is now a prior!
But,
$=P\left(D_{2} \mid H_{i} D_{1}\right) P\left(D_{1} \mid H_{i}\right) P\left(H_{i}\right)$
$=P\left(D_{1} D_{2} \mid H_{i}\right) P\left(H_{i}\right)$

> this being symmetrical shows that we would get the same answer regardless of the order of seeing the data

All priors $P\left(H_{i}\right)$ are actually $P\left(H_{i} \mid D\right)$, conditioned on previously seen data! Often write this as $P\left(H_{i} \mid I\right)$. - background information

Bayes Law is a "calculus of inference", better (and certainly more self-consistent) than folk wisdom.

Example: Hempel's Paradox

Folk wisdom: A case of a hypothesis adds support to that hypothesis.
Example: "All crows are black" is supported by each new observation of a black crow.

But this is supported by the observation of a white shoe.
So, the observation of a white shoe is thus evidence that all crows are black!

We observe one bird, and it is a black crow.
a) Which world are we in?
b) Are all crows black?

Important concept, Bayes odds ratio:

$$
\begin{aligned}
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{2} \mid D\right)} & =\frac{P\left(D \mid H_{1}\right) P\left(H_{1}\right)}{P\left(D \mid H_{2}\right) P\left(H_{2}\right)} \\
& =\frac{0.0001 P\left(H_{1}\right)}{0.1 P\left(H_{2}\right)}=0.001 \frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}
\end{aligned}
$$

So the observation strongly supports H 2 and the existence of white crows.
Hempel's folk wisdom premise is not true.
Data supports the hypotheses in which it is more likely compared with other hypotheses. (This is Bayes!)

We must have some kind of background information about the universe of hypotheses, otherwise data has no meaning at all.

Our next topic is Bayesian Estimation of
 Parameters. We'll ease into it with an

example that looks a lot like the Monte Hall
Problem:

The Jailer's Tip:

- Of 3 prisoners (A,B,C), 2 will be released tomorrow.
- A, who thinks he has a $2 / 3$ chance of being released, asks jailer for name of one of the lucky - but not himself.
- Jailer says, truthfully, "B".
- "Darn," thinks A, "now my chances are only $1 / 2$, C or me".

Is this like Monty Hall? Did the data ("B") change the probabilities?

Further, suppose (unlike Monty Hall) the jailer is not indifferent about responding "B" versus "C". Does that change your answer to the previous question?

So if A knows the value x, he can calculate his chances.
If $x=1 / 2$ (like Monty Hall), his chances are $2 / 3$, same as before; so (unlike Monty Hall) he got no new information.
If $x \neq 1 / 2$, he does get new info - his chances change.
But what if he doesn't know x at all?

"Marginalization" (this is important!)

- When a model has unknown, or uninteresting, parameters we "integrate them out" ...
- ...multiplying by any knowledge of their distribution
- At worst, just a prior informed by background information
- At best, a narrower distribution based on data
- This is not any new assumption about the world
- it's just the Law of de-Anding

$$
\begin{aligned}
& \text { (e.g., Jailer's Tip): } \\
& \begin{aligned}
P\left(A \mid S_{B} I\right) & =\int_{x} P\left(A \mid S_{B} x I\right) p(x \mid I) d x \\
& =\int_{x} \frac{1}{1+x} p(x \mid I) d x
\end{aligned}
\end{aligned}
$$

(repeating previous equation:)

$$
\begin{aligned}
P\left(A \mid S_{B} I\right) & =\int_{x} P\left(A \mid S_{B} x I\right) p(x \mid I) d x \\
& =\int_{x} \frac{1}{1+x} p(x \mid I) d x
\end{aligned}
$$

first time we've seen a continuous probability distribution, but we'll skip the obvious repetition of all the previous laws

$$
p(x) \equiv p(x \mid I)
$$

(Notice that $p(x)$ is a probability of a probability! That is fairly common in Bayesian inference.)

$$
\sum_{i} P_{i}=1 \leftrightarrow \sum_{i} p\left(x_{i}\right) d x_{i}=1 \leftrightarrow \int_{x} p(x) d x=1
$$

(repeating previous equation:)

$$
\begin{aligned}
P\left(A \mid S_{B} I\right) & =\int_{x} P\left(A \mid S_{B} x I\right) p(x \mid I) d x \\
& =\int_{x} \frac{1}{1+x} p(x \mid I) d x
\end{aligned}
$$

What should Prisoner A take for $p(x)$? Maybe the "uniform prior"?

$$
\begin{aligned}
& p(x)=1, \quad(0 \leq x \leq 1) \\
& P\left(A \mid S_{B} I\right)=\int_{0}^{1} \frac{1}{1+x} d x=\ln 2=0.693
\end{aligned}
$$

Not the same as the "massed prior at $x=1 / 2$ "

$$
\begin{aligned}
& p(x)=\delta\left(x-\frac{1}{2}\right), \longleftarrow(0 \leq x \leq 1) \\
& P\left(A \mid S_{B} I\right)=\frac{1}{1+1 / 2} \equiv 2 / 3 \\
& \\
& \text { substitute value and } \\
& \text { remove integral }
\end{aligned}
$$

Review where we are: $\quad P\left(A \mid S_{B} I\right)=\int_{x} P\left(A \mid S_{B} x I\right) p(x \mid I) d x$
We are trying to estimate a parameter $\quad=\int_{x} \frac{1}{1+x} p(x \mid I) d x$
$x=P\left(S_{B} \mid B C\right), \quad(0 \leq x \leq 1)$
The form of our estimate is a (Bayesian) probability distribution (of the parameter, itself here just happening to be a probability)

This is a sterile exercise if it is just a debate about priors. What we need is data! Data might be a previous history of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

$$
N=35, \quad N_{B}=15, \quad N_{C}=20 \quad \begin{aligned}
& \text { (What's wrong with: } \mathrm{x}=15 / 35=0.43 ? \\
& \text { Hold on...) }
\end{aligned}
$$

We hypothesize (might later try to check) that these are i.i.d. "Bernoulli trials" and therefore informative about x

As good Bayesians, we now need $\quad P(\operatorname{data} \mid x)$
$P($ data $\mid x)\left\{\begin{array}{l}\text { means different things in frequentist vs. Bayesian contexts, } \\ \text { so this is a good time to understand the differences (we'll use } \\ \text { both ideas as appropriate) }\end{array}\right.$
Frequentist considers the universe of what might have been, imagining repeated trials, even if they weren't actually tried, and needs no prior:
since i.i.d. only the \mathcal{N} s can matter (a so-called "sufficient statistic").

$$
P(\text { data } \mid x)=\binom{N}{N_{B}} \overbrace{x^{N_{\mathrm{B}}}(1-x)^{N_{\mathrm{C}}}}^{\text {prob. of exact sequence seen }} \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

no. of equivalent arrangements

Bayesian considers only the exact data seen, and has a prior:

$$
P(x \mid \text { data }) \propto x^{N_{\mathrm{B}}}(1-x)^{N_{\mathrm{C}}} p(x \mid I) \quad \text { but we might first suppose }
$$

No binomial coefficient, both conceptually and also since independent of x and absorbed in the proportionality. Use only the data you see, not "equivalent arrangements" that you didn't see. This issue is one we'll return to, not always entirely sympathetically to Bayesians (e.g., goodness-of-fit).

