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Example: The Monty Hall or 
Let’s Make a Deal Problem

• Three doors
• Car (prize) behind one door
• You pick a door, but don’t open it yet
• Monty then opens one of the other doors, always 

revealing no car (he knows where it is)
• You now get to switch doors if you want
• Should you?
• Most people reason: Two remaining doors were 

equiprobable before, and nothing has changed.  So 
doesn’t matter whether you switch or not.

• Marilyn vos Savant (“highest IQ person in the world”) famously thought otherwise (Parade 
magazine, 1990)

• No one seems to know or care what Monty Hall thought!
– he is alive at age 89
– his daughter is Joanna Gleason, who starred in Sondheim’s “Into the Woods”
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Hi = car behind door i, i = 1, 2, 3
Wlog, you pick door 2 (relabeling).
Wlog, Monty opens door 3 (relabeling).
P (Hi|O3) ∝ P (O3|Hi)P (Hi)

ignorance of Monty’s preference
between 1 and 3, so take 1/2

So you should always switch: doubles your chances!

“Without loss of generality…”

P (H1|O3) ∝ 1 · 13 = 2
6

P (H2|O3) ∝ 1
2 · 13 = 1

6

P (H3|O3) ∝ 0 · 13 = 0
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Exegesis on Monty Hall

F Very important example! Master it.
F P (Hi) =

1
3
is the “prior probability” or “prior”

F P (Hi|O3) is the “posterior probability” or “posterior”
F P (O3|Hi) is the “evidence factor” or “evidence”
F Bayes says posterior ∝ evidence × prior
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Commutivity/Associativity of Evidence

P (Hi|D1D2) desired
We see D1:
P (Hi|D1) ∝ P (D1|Hi)P (Hi)

Then, we see D2:
P (Hi|D1D2) ∝ P (D2|HiD1)P (Hi|D1)
But,
= P (D2|HiD1)P (D1|Hi)P (Hi)
= P (D1D2|Hi)P (Hi)

this is now a prior!

this being symmetrical shows that we would get the same answer 
regardless of the order of seeing the data

All priors P (Hi) are actually P (Hi|D),
conditioned on previously seen data! Often
write this as P (Hi|I). background information
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Bayes Law is a “calculus of inference”, better (and 
certainly more self-consistent) than folk wisdom.

Example: Hempel’s Paradox

Folk wisdom: A case of a hypothesis adds support to that 
hypothesis.

Example:  “All crows are black” is supported by each new 
observation of a black crow.

All crows 
are black

All non-black things 
are non-crows

But this is supported by the observation of a white shoe.

So, the observation of a white shoe is thus evidence that 
all crows are black!
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We observe one bird, and it is a black crow.
a) Which world are we in?
b) Are all crows black?

P (H1|D)
P (H2|D)

=
P (D|H1)P (H1)
P (D|H2)P (H2)

=
0.0001P (H1)

0.1P (H2)
= 0.001

P (H1)

P (H2)

So the observation strongly supports H2 and the existence of white crows.

Hempel’s folk wisdom premise is not true.

Data supports the hypotheses in which it is more likely compared with other 
hypotheses.  (This is Bayes!)

We must have some kind of background information about the universe of 
hypotheses, otherwise data has no meaning at all.

I.J. Good: “The White Shoe 
is a Red Herring” (1966)

Important concept, 
Bayes odds ratio:
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Our next topic is Bayesian Estimation of 
Parameters.  We’ll ease into it with an 
example that looks a lot like the Monte Hall 
Problem:

• Of 3 prisoners (A,B,C), 2 will be released tomorrow.
• A, who thinks he has a 2/3 chance of being released, asks 

jailer for name of one of the lucky – but not himself.
• Jailer says, truthfully, “B”.
• “Darn,” thinks A, “now my chances are only ½, C or me”.

A

Is this like Monty Hall?  Did the data (“B”) change the probabilities?

The Jailer’s Tip: 
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Further, suppose (unlike Monty Hall) the jailer is not indifferent about responding 
“B” versus “C”.  Does that change your answer to the previous question?

P (SB|BC) = x, (0 ≤ x ≤ 1)

“says B”

P (A|SB) = P (AB|SB) + P (AC |SB)

=
P (SB|AB)P (AB)

P (SB|AB)P (AB) + P (SB|BC)P (BC) + P (SB|CA)P (CA)

=
1
3

1 · 13 + x · 13 + 0
=

1

1 + x

0
1 1/3

x

So if A knows the value x, he can calculate his chances.
If x=1/2 (like Monty Hall), his chances are 2/3, same as before; so (unlike 
Monty Hall) he got no new information.
If x≠1/2, he does get new info – his chances change.

But what if he doesn’t know x at all?
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“Marginalization” (this is important!)

(e.g., Jailer’s Tip):

P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

law of de-Anding:
x’s are EME!

• When a model has unknown, or uninteresting, 
parameters we “integrate them out” …

• …multiplying by any knowledge of their distribution
– At worst, just a prior informed by background information
– At best, a narrower distribution based on data

• This is not any new assumption about the world
– it’s just the Law of de-Anding
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P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

p(x) ≡ p(x|I)

first time we’ve seen a continuous probability distribution, 
but we’ll skip the obvious repetition of all the previous laws

X
i

Pi = 1 ↔
X
i

p(xi)dxi = 1 ↔
Z
x

p(x) dx = 1

(Notice that p(x) is a probability of a probability!  
That is fairly common in Bayesian inference.) 

(repeating previous equation:)
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P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

What should Prisoner A take for p(x) ?
Maybe the “uniform prior”?

p(x) = 1, (0 ≤ x ≤ 1)
P (A|SBI) =

R 1
0

1
1+xdx = ln 2 = 0.693

p(x) = δ(x− 1
2 ), (0 ≤ x ≤ 1)

P (A|SBI) = 1
1+1/2 = 2/3

Not the same as the “massed prior at x=1/2”
“Dirac delta function”

substitute value and 
remove integral

A

(repeating previous equation:)
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Review where we are:
We are trying to estimate a parameter

x = P (SB |BC), (0 ≤ x ≤ 1)
The form of our estimate is a (Bayesian) probability distribution
(of the parameter, itself here just happening to be a probability)

This is a sterile exercise if it is just a debate about priors.
What we need is data! Data might be a previous history 
of choices by the jailer in identical circumstances.

BCBCCBCCCBBCBCBCCCCBBCBCCCBCBCBBCCB

N = 35, NB = 15, NC = 20

We hypothesize (might later try to check) that these are i.i.d. “Bernoulli 
trials” and therefore informative about x

“independent and identically distributed”

As good Bayesians, we now need P (data|x)

P (A|SBI) =
R
x
P (A|SBxI) p(x|I) dx

=
R
x

1
1+x p(x|I) dx

(What’s wrong with: x=15/35=0.43?  
Hold on…)



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 14

P (data|x)
means different things in frequentist vs. Bayesian contexts,
so this is a good time to understand the differences (we’ll use 
both ideas as appropriate)

Frequentist considers the universe of what might have been, imagining 
repeated trials, even if they weren’t actually tried, and needs no prior:

since i.i.d. only the N ’s can matter (a so-called “sufficient statistic”).

P (data|x) =
µ
N

NB

¶
xNB (1− x)NC

prob. of exact sequence seen

no. of equivalent arrangements

¡
n
k

¢
= n!

k!(n−k)!

Bayesian considers only the exact data seen, and has a prior:

P (x|data) ∝ xNB (1− x)NC p(x|I)

No binomial coefficient, both conceptually and also since independent of x 
and absorbed in the proportionality.  Use only the data you see, not 
“equivalent arrangements” that you didn’t see.  This issue is one we’ll 
return to, not always entirely sympathetically to Bayesians (e.g., 
goodness-of-fit).

but we might first suppose 
that  the prior it is uniform


