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Protocol 1: Retrospective analysis or “case/control study”

In the null hypothesis, 
both columns share row 
probabilities q and (1-q).
But we don’t know q.  It’s 
a “nuisance parameter”.

C1 already has the disease.  We 
retrospectively look at their factors.
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Protocol 2:  Prospective experiment or “longitudinal study”

In the null hypothesis, both rows share row probabilities p and 
(1-p). But we don’t know p.  It’s now the nuisance parameter.

Identify samples with the factors, then 
watch to see who gets the disease
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Protocol 3: Cross-sectional or snapshot study (no fixed marginals)

Asymptotic methods (e.g. chi-square) are typically equivalent to making 
point ML estimates of p,q, and thus the nuisance factors, from the data 
itself. Remember when we encountered this before?

multinomial distribution

E.g., test all Austin residents for both 
disease and factors.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

Digression on the multinomial distribution

On each i.i.d. try, exactly one of K outcomes occurs, with probabilities

p1, p2, . . . , pK

KX
i=1

pi = 1

For N tries, the probability of seeing exactly the outcome

n1, n2, . . . , nK

KX
i=1

ni = N

is

probability of one 
specific outcome

number of equivalent arrangements

abcde fgh ijklmnop q  rs tuvwxyz
(12345)(123)(12345678)(1)(12)(1234567)

N=26: N! arrangements

n1 = 5 n2 = 3 n6 = 7
partition into the 
observed ni’s

P (n1, . . . , nK |N, p1, . . . , pK) =
N !

n1! · · ·nK !
pn11 p

n2
2 · · · pnKK
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So, in all three cases we got a product of “nuisance” probabilities 
(depending on unknown p or q or both) and a “sufficient statistic”
conditioned on all the marginals.

Fisher’s Exact Test just throws away the nuisance factors and 
uses the sufficient statistic:

This can also be seen to be the (purely combinatorial) probability of the table 
with all marginals fixed:

Numerator: number of partitions with n00=k
Denominator: sum numerator over k
With all marginals fixed, n00 determines the 
whole table.

Vandermonde’s identity:

Proof:  How many ways can you choose a subcommittee of size 
r from a committee with n Democrats and m Republicans?

How many Democrats on the subcommittee?

table is fully determined by k alone

A statistic is sufficient "when no other statistic which can be calculated from the same sample provides any 
additional information as to the value of the parameter".
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That was all about the distribution of tables in the null hypothesis.
Now we complete the rest of the tail test paradigm:
The most popular choice for a statistic for 2x2 tables is the “Wald statistic”:

(sorry for the slight 
change in notation!)

This is constructed so that it will 
asymptotically became a true t-value.

You could instead use the Pearson (chi-square) statistic,
but not the assumption that it is chi-square distributed.

Notice that this is monotonic with m when all marginals are fixed.
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• Compute the statistic for the data
• Loop over all possible 

contingency tables with the same 
marginals
– for 2x2 there is just one free 

parameter
• Compute the statistic for each 

table in the loop
• Accumulate weight (by 

hypergeometric probability) of 
statistic <, =, > the data statistic

• Output the p-value (or, because of 
discreteness effects, the range)

So, the Fisher Exact Test looks like this: Is this table a significant result?

Actually, here in the 2x2 case, all statistics monotonic in m are equivalent (except for 
some two-tail issues)!
So the test statistic only matters in the case of larger tables, when there is more than 
one degree of freedom (with fixed marginals).
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myprob = @(m) nchoosek(24,m)*nchoosek(29,11-m)/nchoosek(53,11);
ms = 0:11
ps = arrayfun(myprob,ms)
ms =

0     1     2     3     4     5     6     7     8     9    10    11
ps =
0.0005    0.0063    0.0363    0.1140    0.2176    0.2649    0.2097    0.1078    0.0353
0.0070    0.0007    0.0000
[sum(ps(1:8)) ps(9) sum(ps(10:12))]
ans =

0.9570    0.0353    0.0077
sum(ps(9:12))
ans =

0.0430
bar(ms,ps)

1-tail p-valueadd for 2-tail

Editorial: We will next learn an efficient way to 
compute the Fisher Exact test.  But despite the 
words “Fisher” (true) and  “exact” (question-
able) in its name, this test isn’t conceptually 
well grounded, since virtually never are all 
marginals held fixed (none of Protocols 1,2,3 
above)!  At best it is an approximation that 
ignores the nuisance parameters (p and/or q).

I don’t understand why Fisher Exact is so 
widely used. I think it is historical accident, due 
to outdated frequentist worship of sufficient 
statistics!

Compute Fisher Exact Test for our table
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B

3
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A

1f

g

f A
f B
f B
f B
g A
g A
g B

f B
f A
f A
f B
g B
g A
g B

randomly 
permute 
the 
second 
column

expand 
the table 
back to 
data

compute and
save statistic, then

B

2

1 2

A

2f

g

(notice that all marginals are preserved – will 
come back to this point)

construct 
the new 
table

An computational alternative to the Fisher Exact Test is the Permuation Test.
The idea is to break any association between the row and column variables by 
shuffling.  This is allowed under the null hypothesis of no association!

note, will always have just two 
columns for any size 
contingency table
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Aha!  The permutation preserves all marginals.  In fact, it is a Monte Carlo 
calculation of the Fisher Exact Test. And it is easy to compute for any size 
table!

function t = wald(tab)
m = tab(1,1);
n = tab(1,2);
mm = m + tab(2,1);
nn = n + tab(2,2);
p1 = m/mm;
p2 = n/nn;
p = (m+n)/(mm+nn);
t = (p1-p2)/sqrt(p*(1-p)*(1/mm+1/nn));

table = [8 3; 16 26;]
table =

8     3
16    26

tdata = wald(table)
tdata =

2.0542

Code up the Wald statistic.

The data show about a 2 standard deviation effect, except that they’re 
not really standard deviations because of the small counts!

In scientific papers, people can equally well say, “Fisher Exact test” or “Permutation test”.  You might 
think that the former sounds more learned, but to me it sounds like they don’t know exactly what their 
test actually did!
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[row col] = ndgrid(1:2,1:2);
d = [];
for k=1:numel(table); d = cat(1,d,repmat([row(k),col(k)],table(k),1)); end;
size(d)
ans =

53     2
accumarray(d,1,[2,2])
ans =

8     3
16    26

gen = @(x) wald(accumarray( [d(randperm(size(d,1)),1) d(:,2)] ,1,[2,2]));

gen(1)
ans =

-0.6676

perms = arrayfun(gen,1:100000);

hist(perms,(-4:.1:5))
cdfplot(perms)

Expand the table and generate permutations:

Try one permutation just to see it work.

Check that we recover the original table.

It’s fast, so can easily do lots of permuations.

(Darn it, I couldn’t think of a way to do this 
in Matlab without an explicit loop, thus 
spoiling my no-loop record)*

*Peter Perkins (MathWorks) suggests the wonderfully obscure
d = [rldecode(table,row) rldecode(table,col)];
where rldecode is one of Peter Acklam’s Matlab Tips and Tricks.

This tells each cell its row and column number
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We get discrete values because only a few discrete tables are possible.

data 
value is 
here 
(ties)

neg of 
data 
value is 
here

pvalgt = numel(perms(perms>wald(table)))/numel(perms)
pvalge = numel(perms(perms>=wald(table)))/numel(perms)
pvaltt = (numel(perms(perms > wald(table)))+numel(perms(perms < -wald(table))))/numel(perms)
pvaltte = (numel(perms(perms >= wald(table)))+numel(perms(perms <= -wald(table))))/numel(perms)
pvalwrongtail = numel(perms(perms> -wald(table)))/numel(perms)

pvalgt = 0.00812
pvalge = 0.04382
pvaltt = 0.01498
pvaltte = 0.05068
pvalwrongtail = 0.99314

We reproduce values from Fisher Exact test done 
combinatorially


