CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin
Lecture 19

Protocol 1: Retrospective analysis or "case/control study"

C_{1} already has the disease. We retrospectively look at their factors.

In the null hypothesis, both columns share row probabilities q and (1-q). But we don't know q. It's a "nuisance parameter".

q	$\operatorname{bin}_{q}\left(n_{.0}, n_{00}\right)$	$\operatorname{bin}_{q}\left(n_{.1}, n_{01}\right)$
$n_{0 .}$		
$(1-q)$	$\sqrt{ }$	$\sqrt{ }$
$n_{1 .}$		
	$n_{.0}$ (fixed)	$n_{.1}$ (fixed)

	C_{0}	C_{1}	
f_{0}	n_{00}	n_{01}	$n_{0 .}$
f_{1}	n_{10}	n_{11}	$n_{1 .}$
	$n_{.0}$	$n_{.1}$	$n_{. .}$

$$
\begin{aligned}
P(\text { table }) & =\operatorname{bin}_{q}\left(n_{.0}, n_{00}\right) \operatorname{bin}_{q}\left(n_{.1}, n_{01}\right) \\
& =\binom{n_{.0}}{n_{00}} q^{n_{00}}(1-q)^{n_{10}}\binom{n_{.1}}{n_{01}} q^{n_{01}}(1-q)^{n_{11}} \\
& =\frac{n_{.0}!n_{.1}!}{n_{00}!n_{01}!n_{10}!n_{11}!} q^{n_{0 .}}(1-q)^{n_{1 .}} \\
& =\operatorname{bin}_{q}\left(n_{. .}, n_{0 .}\right) \times \frac{n_{0 .}!n_{1}!n_{.0}!n_{.1}!}{n_{. .}!n_{00}!n_{01}!n_{10}!n_{11}!} \\
& \equiv \operatorname{bin}_{q}\left(n_{. .}, n_{0 .}\right) \times \operatorname{hyper}\left(n_{00} ; n_{. .}, n_{.0}, n_{0 .}\right) \\
& =P\left(n_{0 .} \mid n_{. .}, q\right) \times P\left(\text { table } \mid n_{0 .}, n_{. .}\right)
\end{aligned}
$$

$\operatorname{hyper}\left(n_{00} ; n_{. .}, n_{.0}, n_{0 .}\right)=\frac{\binom{n_{.0}}{n_{00}}\binom{n_{.1}}{n_{01}}}{\binom{n_{.}}{n_{0 .}}}$

Protocol 2: Prospective experiment or "longitudinal study"

Identify samples with the factors, then watch to see who gets the disease

In the null hypothesis, both rows share row probabilities p and (1-p). But we don't know p. It's now the nuisance parameter.

	C_{0}	C_{1}	
f_{0}	n_{00}	n_{01}	$n_{0 .}$
f_{1}	n_{10}	n_{11}	$n_{1 .}$
	$n_{.0}$	$n_{.1}$	$n_{. .}$

	p	$(1-p)$	
f_{0}	$\operatorname{bin}_{p}\left(n_{0 .}, n_{00}\right)$	$\sqrt{ }$	$n_{0 .}$ (fixed)
f_{1}	$\operatorname{bin}_{p}\left(n_{1 .}, n_{10}\right)$	$\sqrt{ }$	$n_{1 .}$ (fixed)
	$n_{.0}$	$n_{.1}$	$n_{. .}$(fixed)

$$
\begin{aligned}
P(\text { table }) & =\operatorname{bin}_{p}\left(n_{0 .}, n_{00}\right) \operatorname{bin}_{q}\left(n_{1 .}, n_{10}\right) \\
& =\operatorname{bin}_{p}\left(n_{. .}, n_{.0}\right) \times \frac{n_{0}!n_{1}!n_{.0}!n_{.1}!}{n_{. .}!n_{00}!n_{01}!n_{10}!n_{11}!} \\
& =P\left(n_{.0} \mid n_{. .}, p\right) \times P\left(\text { table } \mid n_{.0}, n_{. .}\right)
\end{aligned}
$$

Protocol 3: Cross-sectional or snapshot study (no fixed marginals)
E.g., test all Austin residents for both disease and factors.

multinomial distribution

$$
\begin{aligned}
P(\text { table }) & =\frac{n_{.!}!}{n_{00}!n_{01}!n_{10}!n_{11}!}[p q]^{n_{00}}[(1-p) q]^{n_{01}}[(1-q) p]^{n_{10}}[(1-p)(1-q)]^{n_{11}} \\
& =\operatorname{bin}_{p}\left(n_{. .}, n_{.0}\right) \operatorname{bin}_{q}\left(n_{. .}, n_{0 .}\right) \times \frac{n_{0 .}!n_{1 .}!n_{.0}!n_{.1}!}{n_{. .}!n_{00}!n_{01}!n_{10}!n_{11}!} \\
& =P\left(n_{.0} \mid n_{. .}, p\right) P\left(n_{0 .} \mid n_{. .}, q\right) \times P\left(\text { table } \mid n_{.0}, n_{0 .} n_{. .}\right)
\end{aligned}
$$

Asymptotic methods (e.g. chi-square) are typically equivalent to making point ML estimates of p, q, and thus the nuisance factors, from the data itself. Remember when we encountered this before?

The problem is we have only Bayesian (uncertain) knowledge about r
$P(r \mid$ data $)=\operatorname{bin}(0,3 \times 37, r) \operatorname{bin}(0,3 \times 37, r) \operatorname{bin}(1,5 \times 37, r) \operatorname{bin}(0,5 \times 37, r)$ $\times \operatorname{bin}(0,6 \times 37, r) \operatorname{bin}(1,11 \times 37, r) \operatorname{bin}(3,10 \times 37, r) / r$

A common frequentist practice is to use the maximum likelihood estimate of r This is just wrong (except asymptotically if the distribution of r were ver
narrow) because $T 111$'s extreme tail probabilities will be dominated by the extreme (but possible) values of r.

A pretty good way to proceed is to integrate the p-value over the posterior probability of all
estimated quantities. This is called the "posterior predictive p-value" and is an example estimated quantities. This is called the "posterior predictive p-value" and is an example a set of methods loosely called "empirical Bayes".
$p_{\text {tail } 11}=\int_{0}^{\infty} \sum_{k=5}^{37} \operatorname{bin}(k, 9 \times 37, r) P(r \mid$ data $) d r / \int_{0}^{\infty} P(r \mid$ data $) d r$

Digression on the multinomial distribution

On each i.i.d. try, exactly one of K outcomes occurs, with probabilities

$$
p_{1}, p_{2}, \ldots, p_{K} \quad \sum_{i=1}^{K} p_{i}=1
$$

For N tries, the probability of seeing exactly the outcome

$$
n_{1}, n_{2}, \ldots, n_{K} \quad \sum_{i=1}^{K} n_{i}=N
$$

is

$$
P\left(n_{1}, \ldots, n_{K} \mid N, p_{1}, \ldots, p_{K}\right)=\underbrace{\frac{N!}{n_{1}!\cdots n_{K}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{K}^{n_{K}}}_{\text {number of equivalent arrangements }}
$$

So, in all three cases we got a product of "nuisance" probabilities (depending on unknown p or q or both) and a "sufficient statistic" conditioned on all the marginals.

Fisher's Exact Test just throws away the nuisance factors and uses the sufficient statistic:

$$
P\left(\text { table } \mid n_{0 .}, n_{.0}, n_{. .}\right)=\frac{n_{0 .}!n_{1 .}!n_{.0}!n_{.1}!}{n_{. .}!n_{00}!n_{01}!n_{10}!n_{11}!}
$$

This can also be seen to be the (purely combinatorial) probability of the table with all marginals fixed:

A statistic is sufficient "when no other statistic which can be calculated from the same sample provides any additional information as to the value of the parameter".

That was all about the distribution of tables in the null hypothesis.
Now we complete the rest of the tail test paradigm:
The most popular choice for a statistic for 2×2 tables is the "Wald statistic":

	C_{0}	C_{1}
f_{0}	m	n
f_{1}	$M-m$	$N-n$
totals	M	N

(sorry for the slight
change in notation!)

$$
\begin{aligned}
& T=\frac{\widehat{p_{1}}-\widehat{p_{2}}}{\sqrt{\widehat{p}(1-\widehat{p})\left(M^{-1}+N^{-1}\right)}} \quad \begin{array}{l}
\text { This is constructe } \\
\text { asymptotically be }
\end{array} \\
& \widehat{p_{1}} \equiv m / M, \quad \widehat{p_{2}} \equiv n / N, \quad \widehat{p} \equiv(m+n) /(M+N)
\end{aligned}
$$

Notice that this is monotonic with m when all marginals are fixed.
You could instead use the Pearson (chi-square) statistic, but not the assumption that it is chi-square distributed.

So, the Fisher Exact Test looks like this:
Is this table a significant result?

- Compute the statistic for the data \longrightarrow
- Loop over all possible contingency tables with the same marginals
- for 2×2 there is just one free parameter
- Compute the statistic for each table in the loop
- Accumulate weight (by
 hypergeometric probability) of statistic $<,=,>$ the data statistic
- Output the p-value (or, because of

$$
P(m)=\binom{24}{m}\binom{29}{11-m} /\binom{53}{11}, \quad 0 \leq m \leq 11
$$ discreteness effects, the range)

Actually, here in the 2×2 case, all statistics monotonic in m are equivalent (except for some two-tail issues)!
So the test statistic only matters in the case of larger tables, when there is more than one degree of freedom (with fixed marginals).

Compute Fisher Exact Test for our table

```
myprob = (m) nchoosek( 24,m)*nchoosek( 29, 11-m)/ nchoosek( 53, 11);
ms=0: 11
ps = arrayf un( myprob, ns )
ns=
ps=
O.0O70 0. 0007 0.0000
```

[surf ps(1:8)) ps(9) surf ps(10: 12))]
ans =
O. 9570
O. 0353
O. 0077
sumf ps (9: 12))
ans =
O. 0430
bar (ms, ps)

Editorial: We will next learn an efficient way to compute the Fisher Exact test. But despite the words "Fisher" (true) and "exact" (questionable) in its name, this test isn't conceptually well grounded, since virtually never are all marginals held fixed (none of Protocols 1,2,3 above)! At best it is an approximation that ignores the nuisance parameters (p and/or q).

I don't understand why Fisher Exact is so widely used. I think it is historical accident, due to outdated frequentist worship of sufficient statistics!

An computational alternative to the Fisher Exact Test is the Permuation Test. The idea is to break any association between the row and column variables by shuffling. This is allowed under the null hypothesis of no association!

(notice that all marginals are preserved - will come back to this point)

Aha! The permutation preserves all marginals. In fact, it is a Monte Carlo calculation of the Fisher Exact Test. And it is easy to compute for any size table!

```
Function t = nald(tab) Code up the Wald statistic.
m=tab(1, 1);
n = tab(1, 2);
mm=m+tab(2,1),
nn =n + tab(2,2);
pI = momm
pz = n/nn;
p = (m+n)/(mm+nn);
t = (pl-pz)/sart(p*(1-p)*(1/mm*1/nn));
table = [8 3; 16 26; ]
table =
    8 3
    16 26
tdata = val d(table)
tdata =
    2.0542 The data show about a 2 standard deviation effect, except that they're not really standard deviations because of the small counts!
```

In scientific papers, people can equally well say, "Fisher Exact test" or "Permutation test". You might think that the former sounds more learned, but to me it sounds like they don't know exactly what their test actually did!

Expand the table and generate permutations:

```
[row col] = ndgri d(1: 2, 1: 2); This tells each cell its row and column number
d = [];
for k=1: numel (table); d = cat(1, d, repmat ([row(k), col (k)],tabl e(k), 1)); end;
size(d)
ans =
    53 2
accumarray(d, 1, [ 2, 2] ) Check that we recover the original table.
ans =
        8 3
    16 26
gen = (x) wal d( accumarray( [d(randpermisize(d, 1)),1) d(:, 2)],1,[ 2, 2]));
gen( 1) Try one permutation just to see it work.
ans =
    -0.6676
perms = arrayf un(gen, 1: 100000); It's fast, so can easily do lots of permuations.
hi st(perms, (-4: . 1: 5))
cdf pl ot (perms)
```

[^0]
We get discrete values because only a few discrete tables are possible.

[^0]: *Peter Perkins (MathWorks) suggests the wonderfully obscure d $=[r i d e c o d e(t a b l e, r o w) ~ r l d e c o d e(t a b l e, c o l)] ;$ where rldecode is one of Peter Acklam's Matlab Tips and Tricks.

