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Log is concave (downward). Jensen’s inequality is thus:

Preliminary: Jensen’s inequality

If a function is concave (downward), then

function(interpolation)  interpolation(function)

Let’s look at the theory behind EM methods more generally:

If
X
i

λi = 1

Then ln
X
i

λiQi ≥
X
i

λi lnQi

This gets used a lot when playing with log-likelihoods.  Proof of the EM 
method that we now give is just one example.
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L(θ) ≡ lnP (x|θ)
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¸
+ L(θ0)

≡ B(θ,θ0) for any θ0, a bound on L(θ)

Find  that maximizes the log-likelihood of the data:

x are the data
z are missing data or nuisance variables
θ are parameters to be determined

marginalize over z

The basic EM theorem:
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Notice that at θ = θ0 we have L(θ) = L(θ0),
so the bound touches the actual likelihood:

So, if we maximize B(θ,θ0) over θ, we are guaranteed that the new
max θ00 will increase L(θ). This can terminate only by converging to
(at least a local) max of L(θ)

And it works whether the maximization step is local or global.

(Can you see why?)
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This is an expectation that can often be 
computed in some better way than literally 
integrating over all possible values of z.

maximizing this is the M-step

So the general EM algorithm repeats the maximization:

sometimes (missing data) 
no dependence on z

sometimes (nuisance 
parameters) a uniform 
prioreach form is 

sometimes 
useful

This is a general way of handling missing data or nuisance parameters if you 
can estimate the probability of what is missing, given what you see (and a 
parameters guess).

θ00 = argmax
θ

X
z

P (z|xθ0) ln
∙
P (xz|θ)
P (zx|θ0)

¸
= argmax

θ

X
z

P (z|xθ0) ln [P (xz|θ)]

= argmax
θ

X
z

P (z|xθ0) ln [P (x|zθ)P (z|θ)]

computing this is the E-step
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Might not be instantly obvious how GMM fits this paradigm!

Showing that this is maximized by the previous re-estimation formulas for 
and  is a multidimensional (fancy) form of the theorem that the mean is the 
measure of central tendency that minimizes the mean square deviation.

See Wikipedia: Expectation-Maximization Algorithm for detailed derivation.

z (missing) is the assignment of data points to components
θ consists of the μs and Σs

P (z|xθ0)→ pnkX
z

P (z|xθ0) ln [P (x|θ)]→ −
X
n,k

pnk
£
(xn − μk) ·Σ−1k · (xn − μk)− ln detΣk

¤

The next time we see an EM method will be when we discuss Hidden
Markov Models.  The “Baum-Welch re-estimation algorithm” for HMMs is an 
EM method.
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Let’s come back to the exon-length distribution yet again!  
Why?  Haven’t we done everything possible already?

• We binned the data and did 2 fitting to a model (2 
Gaussians)

– a.k.a. weighted nonlinear least squares (NLS) 
– it’s MLE if experimental errors are normal
– or in the CLT limit

• We did a 2-component GMM without binning the 
data

– GMM is also an MLE
• but it’s specific to Gaussian components

– good to avoid arbitrary binning when we can
– EM methods are often computationally efficient for 

doing MLE that would otherwise be intractable
– but not all MLE problems can be done by EM 

methods
• So, what we haven’t done yet is MLE on unbinned

data for a model more general than GMM
– nothing magic about it, but it requires general 

nonlinear optimization
– for simple models it’s a reasonable approach
– also, for complicated models, it prepares us for 

MCMC, as we will see
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For a frequentist this is the likelihood of the parameters.
For a Bayesian it is the probability of the parameters (with uniform prior).

exloglen = log10(cell2mat(g.exonlen));
exsamp = randsample(exloglen,600);
[count cbin] = hist(exsamp,(1:.1:4));
count = count(2:end-1);
cbin = cbin(2:end-1);
bar(cbin,count,'y')

Data is 600 exon lengths:

and we want to know the fraction of exons in the 2nd

component

As always, we focus on

MLE is just:

P (data |model parameters) = P (D|θ)

θ = argmaxθ P (D|θ)

To make binning less tempting, suppose we have 
much less data than before:

shown here binned, but the 
goal now is NOT to bin
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function el = twogloglike(c,x)
p1 =      exp(-0.5.*((x-c(1))./c(2)).^2);
p2 = c(3)*exp(-0.5.*((x-c(4))./c(5)).^2);
p = (p1 + p2) ./ (c(2)+c(3)*c(5));
el = sum(-log(p));

c0 = [2.0 .2 .16 2.9 .4];
fun = @(cc) twogloglike(cc,exsamp);
cmle = fminsearch(fun,c0)

cmle =
2.0959      0.17069      0.18231       2.3994      0.57102

ratio = cmle(2)/(cmle(3)*cmle(5))
ratio =

1.6396

Since the data points are independent, the likelihood is the product of the model 
probabilities over the data points.

The likelihood would often underflow, so it is common to use the log-likelihood.
(Also, we’ll see that log-likelihood is useful for estimating errors.)

the log likelihood function

The maximization is not always as easy as this looks!  
Can get hung up on local extrema, choose wrong 
method, etc. Choose starting guess to be closest 
successful previous parameter set.

need a starting guess

Wow, this estimate of the ratio of the areas is really different from our previous 
estimate (binned values) of 6.3 +- 0.1 (see Lecture 12)!  Is it possibly right?

We could estimate the Hessian (2nd derivative) matrix at the maximum to get an 
estimate of the error of the ratio.  It would come out only ~0.3.  Doesn’t help.

must normalize, but need not keep ’s, etc.
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• The problem is not with MLE, it’s with our model!
• Time to face up to the sad truth:  this particular data really isn’t a 

mixture of Gaussians
– it’s “heavy tailed”
– previously, with lots of data, we tried to mitigate this by tail trimming, or 

maybe a mixture with a broad third component, but now we have only 
sparse data, so the problem is magnified

• When the data is too sparse to bin, you have to be sure that your 
model isn’t dominated by the tails
– CLT convergence slow, or maybe not even at all
– resampling would have shown this

• e.g., ratio would have varied widely over the resamples (try it!)

• Let’s try MLE on a heavy-tailed model: use Student-t’s instead of 
Gaussians
– this adds a parameter  to the model
– is it justified? (the problem of model selection)
– note: Gaussian is limit of   ∞
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Student() is a convenient empirical parameterization of heavy-tailed models
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function el = twostudloglike(c,x,nu)
p1 =      tpdf((x-c(1))./c(2),nu);
p2 = c(3)*tpdf((x-c(4))./c(5),nu);
p = (p1 + p2) ./ (c(2)+c(3)*c(5));
el = sum(-log(p));

rat = @(c) c(2)/(c(3)*c(5));

fun10 = @(cc) twostudloglike(cc,exsamp,10);
ct10 = fminsearch(fun10,cmle)
ratio = rat(ct10)
ct10 =

2.0984      0.18739      0.11091        2.608      0.55652
ratio =

3.0359

fun4 = @(cc) twostudloglike(cc,exsamp,4);
ct4 = fminsearch(fun4,cmle)
ratio = rat(ct4)
ct4 =

2.1146      0.19669     0.089662        3.116       0.2579
ratio =

8.506

fun2 = @(cc) twostudloglike(cc,exsamp,2);
ct2 = fminsearch(fun2,ct4)
ratio = rat(ct2)
ct2 =

2.1182      0.17296     0.081015        3.151      0.19823
ratio =

10.77

Two Student-t’s instead of two Gaussians:
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Evidently, the answer is sensitive to the assumed value of .
Therefore, we should let  be a parameter in the model, and fit for it, too:

function el = twostudloglikenu(c,x)
p1 =      tpdf((x-c(1))./c(2),c(6));
p2 = c(3)*tpdf((x-c(4))./c(5),c(6));
p = (p1 + p2) ./ (c(2)+c(3)*c(5));
el = sum(-log(p));

ctry = [ct4 4];
funu= @(cc) twostudloglikenu(cc,exsamp);
ctnu = fminsearch(funu,ctry)
rat(ctnu)
ctnu =

2.1141      0.19872     0.090507       3.1132      0.26188       4.2826
ans =

8.3844

Model Selection:
Should we really add  as a model parameter?  Adding a parameter to the 
model always makes it better, so model selection depends on how much the 
(minus) log-likelihood decreases:
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Example (too idealized):  Suppose a model with q parameters is correct.  So its 2

has N-q degress of freedom and has expectation (N-q) ± sqrt[2(N-q)]
If we now add r unnecessary parameters, it is still a “correct” model, but now 2

has the smaller expectation N-q-r.  “Decreases by 1 for each added parameter”.

But this is overfitting.  For fixed MLE parameter values, we would not expect a 
new data set to fit as well.  We fit r parameters of randomness, not of signal.

Example (real life): Suppose a model with q parameters 
fits badly and is thus incorrect.  As we start adding 
parameters (and decreasing 2), we are rightly looking 
at the data residuals to pick good ones. But it would not 
be surprising if we can get 2 > 1 even when overfitting
and exploiting particular randomness.

This suggests that it’s ok to add parameters as long as 2 >> 1.  But…

You might have thought that model selection was a settled issue 
in statistics, but it isn’t at all!

The real problem here is that we don’t have a theory of 
the accessible “space of models”, or of why model 
simplicity is itself an indicator of model correctness (a 
deep philosophical question!)
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AIC: ∆L > 1

BIC: ∆L > 1
2 lnN ≈ 3.2

Note how this is all a bit subjective, since it often depends on what value of  you 
started with as the “natural” value.

Bayes information criterion (BIC):

Akaiki information criterion (AIC):

Google for “AIC BIC” and you will find all manner of unconvincing explanations!

A more radical alternative approach to model selection is “large Bayesian models” with lots 
of parameters, but calculating the full posterior distribution of all the parameters.

“Marginalization” as a substitute for “model simplicity”.  Less emphasis on goodness-of-fit 
(we have seen this before in Bayesian viewpoints).

Can impose additional simplicity constraints “by hand” through (e.g., massed) priors.

MCMC is the computational technique that makes such models feasible.

Various model selection schemes make different trade-offs between 
goodness of fit and model simplicity

(Recall that L = ½ 2.)

One alternative approach (e.g., in machine learning) is to use purely empirical 
approaches to test for overfitting as you add parameters.

Bootstrap resampling, leave-one-out, k-fold cross-validation, etc.

Some empirical check on a model is always a good idea!
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ff = @(nu) twostudloglike( ...
fminsearch(@(cc) twostudloglike(cc,exsamp,nu),ct4) ...
,exsamp,nu);

plot(1:12,arrayfun(ff,1:12))

Gaussian ~216

min ~202

Back in our Student t example, how does the log-likelihood change with ?

So here, both AIC and BIC tell us to  add  as an MLE parameter:


