
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 16

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

“probabilistic assignment” of a data point to a component!

overall likelihood of the model

specify the model as a mixture of Gaussians

M dimensions
k = 1 . . .K Gaussians
n = 1 . . . N data points
P (k) population fraction in k
P (xn) model probability at xn

Key to the notational thicket:

Goal is to find all of the above, starting with only the

“components”

(So far this could be frequentist or Bayesian, although it was invented by frequentists.)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

Expectation, or E-step: suppose we know the model, but not the
assignment of individual points.
(so called because it’s probabilistic assignment by expectation value)

Maximization, or M-step: suppose we know the assignment of
individual points, but not the model.

(so called because [theorem!] the overall likelihood increases at each step)

• Can be proved that alternating E and M steps converges to (at least a local)
maximum of overall likelihood

• Convergence is sometimes slow, with long “plateaus”
• Often start with k randomly chosen data points as starting means, and equal (usually

spherical) covariance matrices
– but then had better try multiple re-starts

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

Because Gaussians underflow so easily, a couple of tricks are important:

1) Use logarithms!

2) Do the sum

by the “log-sum-exp” formula:

We’ll skip these tricks for our 1-D example, but use them (via NR3) in
multidimensional examples.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

mu = [2. 3.];
sig = [0.2 0.4];
pr = @(x) exp(-0.5*((x-mu)./sig).^2)./sig;
pr(2.5)
ans =

0.2197 1.1446

prn = @(x) pr(x)./sum(pr(x));
prn(2.5)
ans =

0.1610 0.8390

prns = zeros([numel(data),2]);
for j=1:numel(data); prns(j,:)=prn(data(j)); end;
prns(100:110,:)
ans =

0.9632 0.0368
0.0803 0.9197
0.7806 0.2194
0.6635 0.3365
0.5819 0.4181
0.9450 0.0550
0.9801 0.0199
0.8824 0.1176
0.9703 0.0297
0.9661 0.0339
0.7806 0.2194

The E-step in 1-D looks like this:

Probabilities of each component. Don’t need to get
the normalizing ’s right, since will (Bayes)
normalize across components...

…like this. Normalized probability.

Compute for all the points (show only 10).

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 6

mu = sum(prns.*repmat(data,[1,2]), 1) ./ sum(prns,1)
xmmu = repmat(data,[1,2]) - repmat(mu,[numel(data),1]);
sig = sqrt(sum(prns .* xmmu.^2, 1) ./ sum(prns,1))
pop = sum(prns,1)/numel(data)

The M-step in 1-D looks like this:

(Elegant in Matlab’s data-parallel language. But, unfortunately, doesn’t generalize well to
multidimensions. We’ll use NR3 instead, which also includes the tricks already mentioned.)

mu = [randsample(data,1) randsample(data,1)]
sig = [.3 .3]
for jj=1:10,

pr = @(x) exp(-0.5*((x-mu)./sig).^2)./(2.506*sig);
prn = @(x) pr(x)./sum(pr(x));
for j=1:numel(data); prns(j,:)=prn(data(j)); end;
mu = sum(prns.*repmat(data,[1,2]), 1) ./ sum(prns,1);
xmmu = repmat(data,[1,2]) - repmat(mu,[numel(data),1]);
sig = sqrt(sum(prns .* xmmu.^2, 1) ./ sum(prns,1));
pop = sum(prns,1)/numel(data);
thefunc = @(x) sum(pop.*pr(x),2);
x = 1:.01:4;
f = arrayfun(thefunc,x);
plot(x,f,'b');
hold on;

end;
[f x] = ksdensity(data);
plot(x,f,'r')
hold off;

Let’s show 10 iterations

Matlab has “kernel smoothing density estimate”
that is convenient for plotting the actual data as a smooth
curve. (But I wouldn’t trust it further than that!)

CSEM prelims alert: You should
be able to understand and write
code like this in MATLAB.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 7

mu =
2.0806 2.3100

sig =
0.1545 0.5025

pop =
0.5397 0.4603

mu =
2.1278 2.0260 2.4186

sig =
0.1515 0.1892 0.5451

pop =
0.3403 0.3399 0.3198

2 components

3 components

Notice that this makes a different set of
“compromises” from other fitting methods. It hates
having points in regions of “zero” probability and
would rather tolerate only fair fits in the “shoulders”.
It is not the same as weighted LS to binned data!

More components will converge to an excellent
approximation. This does not mean that the
components mean anything physically!

In this example, almost all starting points give the same, presumably global, max likelihood.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 8

from: http://www.nr.com/nr3_matlab.html

MATLAB doesn’t have a GMM routine, but NR3 does, and it can be harnessed:

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 9

from: http://www.nr.com/nr3_matlab.html

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 10

Let’s move to 2 dimensions and do an “ideal”, then a “non-ideal”, example.

Ideal: we generate Gaussians, then, we fit to Gaussians

mu1 = [.3 .3];
sig1 = [.04 .03; .03 .04];
mu2 = [.5 .5];
sig2 = [.5 0; 0 .5];
mu3 = [1 .5];
sig3 = [.05 0; 0 .5];
rsamp = [mvnrnd(mu1,sig1,1000); ...

mvnrnd(mu2,sig2,1000); ...
mvnrnd(mu3,sig3,1000)];

size(rsamp)
ans =

3000 2
plot(rsamp(:,1),rsamp(:,2),'.r')

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 11

gmm('construct',rsamp',means');
deltaloglike = 1.e10
while deltaloglike > 0.1;

deltaloglike = gmm('step',1)
for k=1:3;

[mmu ssig] = gmm(k);
[x y] = errorellipse(mmu',ssig',2,100);
plot(x,y,'b');

end;
end;

Note the transposes. Transpose everything going in
and coming out, since Matlab has Fortran, not C,
storage order.

remember our errorellipse function?

This “ideal” example converges rapidly to the right answer.

Use our mex function “gmm”:

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 12

For a non-ideal example, let’s go back to our data on 1st and 2nd exon log-
lengths. In 2-dimensions, we can easily see that something non-GMM is
going on! For the general problem in >2 dimensions, it’s often hard to
visualize whether this is the case or not, so GMMs get used “blindly”.

g = readgenestats('genestats.dat');
ggg = g(g.ne>2,:);
which = randsample(size(ggg,1),3000);
iilen = ggg.intronlen(which);
i1len = zeros(size(which));
i2len = zeros(size(which));
for j=1:numel(i1len), i1llen(j) = log10(iilen{j}(1)); end;
for j=1:numel(i2len), i2llen(j) = log10(iilen{j}(2)); end;
plot(i1llen,i2llen,'.r')
hold on
rsamp = [i1llen', i2llen'];
size(rsamp)
ans =

3000 2

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

ncomp = 3;
plot(rsamp(:,1),rsamp(:,2),'.r')
hold on
means = zeros(ncomp,2);
for k=1:ncomp; means(k,:) = rsamp(ceil(rand*3000),:); end;
gmm('construct',rsamp',means');
deltaloglike = 1.e10;
while deltaloglike > 0.1;

deltaloglike = gmm('step',1);
end;
for k=1:ncomp;

[mmu ssig] = gmm(k);
[x y] = errorellipse(mmu',ssig',2,100);
plot(x,y,'b');

end;
hold off

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 14

We don’t always land on the same local maximum, although there seem to be just
a handfull.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 15

Eight components:

The ones with higher likelihood are pretty good as summaries of the data distribution
(absent a predictive model). But the individual components are unstable and have little
or no meaning. “Fit a lot of Gaussians for interpolation, but don’t believe them.”

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 16

GMMs can have simplified models for the shapes (covariances) of components

• You can constrain the  matrices to be diagonal
– when you have reason to believe that the components individually have

no cross-correlations (align with the axes)

• Or constrain them to be multiples of the unit matrix
– make all components spherical

• Or fix  =  1 (infinitesimal times unit matrix)
– don’t re-estimate , only re-estimate 
– this assigns points 100% to the closest cluster (so don’t actually need to

compute any Gaussians, just compute distances)
– it is called “K-means clustering”

• kind of GMM for dummies
• widely used (there are a lot of dummies!)
• probably always better to use spherical GMM (middle bullet above)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 17

Log is concave (downward). Jensen’s inequality is thus:

Preliminary: Jensen’s inequality

If a function is concave (downward), then

function(interpolation)  interpolation(function)

Let’s look at the theory behind EM methods more generally:

If
X
i

λi = 1

Then ln
X
i

λiQi ≥
X
i

λi lnQi

This gets used a lot when playing with log-likelihoods. Proof of the EM
method that we now give is just one example.

