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“probabilistic assignment” of a data point to a component!

overall likelihood of the model

specify the model as a mixture of Gaussians

M dimensions
k = 1 . . .K Gaussians
n = 1 . . . N data points
P (k) population fraction in k
P (xn) model probability at xn

Key to the notational thicket:

Goal is to find all of the above, starting with only the 

“components”

(So far this could be frequentist or Bayesian, although it was invented by frequentists.)
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Expectation, or E-step: suppose we know the model, but not the 
assignment of individual points.
(so called because it’s probabilistic assignment by expectation value)

Maximization, or M-step: suppose we know the assignment of 
individual points, but not the model.

(so called because [theorem!] the overall likelihood increases at each step)

• Can be proved that alternating E and M steps converges to (at least a local) 
maximum of overall likelihood

• Convergence is sometimes slow, with long “plateaus”
• Often start with k randomly chosen data points as starting means, and equal (usually 

spherical) covariance matrices
– but then had better try multiple re-starts
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Because Gaussians underflow so easily, a couple of tricks are important:

1) Use logarithms!

2) Do the sum

by the “log-sum-exp” formula:

We’ll skip these tricks for our 1-D example, but use them (via NR3) in 
multidimensional examples.
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mu = [2. 3.];
sig = [0.2 0.4];
pr = @(x) exp(-0.5*((x-mu)./sig).^2)./sig;
pr(2.5)
ans =

0.2197    1.1446

prn = @(x) pr(x)./sum(pr(x));
prn(2.5)
ans =

0.1610    0.8390

prns = zeros([numel(data),2]);
for j=1:numel(data); prns(j,:)=prn(data(j)); end;
prns(100:110,:)
ans =

0.9632    0.0368
0.0803    0.9197
0.7806    0.2194
0.6635    0.3365
0.5819    0.4181
0.9450    0.0550
0.9801    0.0199
0.8824    0.1176
0.9703    0.0297
0.9661    0.0339
0.7806    0.2194

The E-step in 1-D looks like this:

Probabilities of each component.  Don’t need to get 
the normalizing ’s right, since will (Bayes) 
normalize across components...

…like this. Normalized probability.

Compute for all the points (show only 10).
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mu = sum(prns.*repmat(data,[1,2]), 1) ./ sum(prns,1)
xmmu = repmat(data,[1,2]) - repmat(mu,[numel(data),1]);
sig = sqrt(sum(prns .* xmmu.^2, 1) ./ sum(prns,1))
pop = sum(prns,1)/numel(data)

The M-step in 1-D looks like this:

(Elegant in Matlab’s data-parallel language.  But, unfortunately, doesn’t generalize well to 
multidimensions.  We’ll use NR3 instead, which also includes the tricks already mentioned.)

mu = [randsample(data,1) randsample(data,1)]
sig = [.3 .3]
for jj=1:10,

pr = @(x) exp(-0.5*((x-mu)./sig).^2)./(2.506*sig);
prn = @(x) pr(x)./sum(pr(x));
for j=1:numel(data); prns(j,:)=prn(data(j)); end;
mu = sum(prns.*repmat(data,[1,2]), 1) ./ sum(prns,1);
xmmu = repmat(data,[1,2]) - repmat(mu,[numel(data),1]);
sig = sqrt(sum(prns .* xmmu.^2, 1) ./ sum(prns,1));
pop = sum(prns,1)/numel(data);
thefunc = @(x) sum(pop.*pr(x),2);
x = 1:.01:4;
f = arrayfun(thefunc,x);
plot(x,f,'b');
hold on;

end;
[f x] = ksdensity(data);
plot(x,f,'r')
hold off;

Let’s show 10 iterations

Matlab has “kernel smoothing density estimate”
that is convenient for plotting the actual data as a smooth 
curve.  (But I wouldn’t trust it further than that!)

CSEM prelims alert:  You should 
be able to understand and write 
code like this in MATLAB.
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mu =
2.0806    2.3100

sig =
0.1545    0.5025

pop =
0.5397    0.4603

mu =
2.1278    2.0260    2.4186

sig =
0.1515    0.1892    0.5451

pop =
0.3403    0.3399    0.3198

2 components

3 components

Notice that this makes a different set of 
“compromises” from other fitting methods.  It hates
having points in regions of “zero” probability and 
would rather tolerate only fair fits in the “shoulders”.  
It is not the same as weighted LS to binned data!

More components will converge to an excellent 
approximation.  This does not mean that the 
components mean anything physically!

In this example, almost all starting points give the same, presumably global, max likelihood.
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from: http://www.nr.com/nr3_matlab.html

MATLAB doesn’t have a GMM routine, but NR3 does, and it can be harnessed:
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from: http://www.nr.com/nr3_matlab.html
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Let’s move to 2 dimensions and do an “ideal”, then a “non-ideal”, example.

Ideal: we generate Gaussians, then, we fit to Gaussians

mu1 = [.3 .3];
sig1 = [.04 .03; .03 .04];
mu2 = [.5 .5];
sig2 = [.5 0; 0 .5];
mu3 = [1 .5];
sig3 = [.05 0; 0 .5];
rsamp = [mvnrnd(mu1,sig1,1000); ...

mvnrnd(mu2,sig2,1000); ...
mvnrnd(mu3,sig3,1000)];

size(rsamp)
ans =

3000           2
plot(rsamp(:,1),rsamp(:,2),'.r')
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gmm('construct',rsamp',means');
deltaloglike = 1.e10
while deltaloglike > 0.1;

deltaloglike = gmm('step',1)
for k=1:3;

[mmu ssig] = gmm(k);
[x y] = errorellipse(mmu',ssig',2,100);
plot(x,y,'b');

end;
end;

Note the transposes.  Transpose everything going in 
and coming out, since Matlab has Fortran, not C, 
storage order.

remember our errorellipse function?

This “ideal” example converges rapidly to the right answer.

Use our mex function “gmm”:
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For a non-ideal example, let’s go back to our data on 1st and 2nd exon log-
lengths.  In 2-dimensions, we can easily see that something non-GMM is 
going on!  For the general problem in >2 dimensions, it’s often hard to 
visualize whether this is the case or not, so GMMs get used “blindly”.

g = readgenestats('genestats.dat');
ggg = g(g.ne>2,:);
which = randsample(size(ggg,1),3000);
iilen = ggg.intronlen(which);
i1len = zeros(size(which));
i2len = zeros(size(which));
for j=1:numel(i1len), i1llen(j) = log10(iilen{j}(1)); end;
for j=1:numel(i2len), i2llen(j) = log10(iilen{j}(2)); end;
plot(i1llen,i2llen,'.r')
hold on
rsamp = [i1llen', i2llen'];
size(rsamp)
ans =

3000           2
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ncomp = 3;
plot(rsamp(:,1),rsamp(:,2),'.r')
hold on
means = zeros(ncomp,2);
for k=1:ncomp; means(k,:) = rsamp(ceil(rand*3000),:); end;
gmm('construct',rsamp',means');
deltaloglike = 1.e10;
while deltaloglike > 0.1;

deltaloglike = gmm('step',1);
end;
for k=1:ncomp;

[mmu ssig] = gmm(k);
[x y] = errorellipse(mmu',ssig',2,100);
plot(x,y,'b');

end;
hold off
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We don’t always land on the same local maximum, although there seem to be just 
a handfull. 
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Eight components:

The ones with higher likelihood are pretty good as summaries of the data distribution 
(absent a predictive model).  But the individual components are unstable and have little 
or no meaning.  “Fit a lot of Gaussians for interpolation, but don’t believe them.”
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GMMs can have simplified models for the shapes (covariances) of components

• You can constrain the  matrices to be diagonal
– when you have reason to believe that the components individually have 

no cross-correlations (align with the axes)

• Or constrain them to be multiples of the unit matrix
– make all components spherical

• Or fix  =  1 (infinitesimal times unit matrix)
– don’t re-estimate , only re-estimate 
– this assigns points 100% to the closest cluster (so don’t actually need to 

compute any Gaussians, just compute distances)
– it is called “K-means clustering”

• kind of GMM for dummies
• widely used (there are a lot of dummies!)
• probably always better to use spherical GMM (middle bullet above)
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Log is concave (downward). Jensen’s inequality is thus:

Preliminary: Jensen’s inequality

If a function is concave (downward), then

function(interpolation)  interpolation(function)

Let’s look at the theory behind EM methods more generally:

If
X
i

λi = 1

Then ln
X
i

λiQi ≥
X
i

λi lnQi

This gets used a lot when playing with log-likelihoods.  Proof of the EM 
method that we now give is just one example.


