CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin

Lecture 15

Mixture Models

Suppose we have N independent events, $\mathrm{i}=1 \ldots \mathrm{~N}$. Each might be from distribution 0 or distribution 1, but we don't know which (2-component mixture)

But we do know the respective probabilities for each i

$$
p_{0 i} \equiv P\left(\mathbf{x}_{i} \mid 0\right) \quad p_{1 i} \equiv P\left(\mathbf{x}_{i} \mid 1\right)
$$

observed events (unknown mixture)

We want a (probabilistic) assignment of each event to 0 or 1.
Suppose $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{N}\right)$ is an assignment of each event to a distribution

$$
\text { e.g., } \mathbf{v}=(1,1,0,1,0,0,0,1, \ldots, 1)
$$

Suppose s is the fraction of events in distribution $1, \quad s=P\left(v_{i}=1\right)$
That is everything we need to know to write down a "forward" model for the probability of the data, given the (known and unknown) quantities:

$$
P(\text { data } \mid \mathbf{v}, s)=\prod_{v_{i}=1} p_{1 i} \times \prod_{v_{i}=0} p_{0 i}
$$

s doesn't enter directly, but it is a
"hyperparameter" that affects the distribution of v's

Now do the Bayes thing!

$$
\begin{aligned}
P(\mathbf{v}, s \mid \text { data }) & \propto P(\text { data } \mid \mathbf{v}, s) P(\mathbf{v}, s) \\
& =P(\text { data } \mid \mathbf{v}, s) P(\mathbf{v} \mid s) P(s) \\
& =\prod_{v_{i}=1} p_{1 i} \times \prod_{v_{i}=0} p_{0 i} \times s^{\#\left(v_{i}=1\right)}(1-s)^{\#\left(v_{i}=0\right)} P(s) \\
& =\prod_{v_{i}=1} p_{1 i} s \times \prod_{v_{i}=0} p_{0 i}(1-s) \times P(s)
\end{aligned}
$$

That is the complete model, usually too much to comprehend directly. Instead, we are usually interested in various marginalizations. For example:

$$
P(s \mid \text { data }) \propto \sum_{v \in \mathbf{2}^{N}}\left[\prod_{v_{i}=1} p_{1 i} s \times \prod_{v_{i}=0} p_{0 i}(1-s) \times P(s)\right]
$$

key step is here: $=\prod_{i} \underbrace{p_{1 i} s+p_{0 i}(1-s)}_{\text {prob of } i \text { in the mixture distribution }} P(s) \quad$ (multiply it out!)

Even more interesting is the marginalization that gives the assignment of each data point to one distribution or the other:

$$
\begin{aligned}
& P\left(v_{j}=1 \mid \text { data }\right) \propto \int \sum_{v \in \mathbf{2}^{N-1}} p_{1 j} s \prod_{v_{i}=1, i \neq j} p_{1 i} s \prod_{v_{i}=0, i \neq j} p_{0 i}(1-s) P(s) d s \\
& =\int p_{1 j} s \frac{P(s \mid \text { data })}{p_{1 j} s+p_{0 j}(1-s)} d s \\
& =\int \frac{p_{1 j} s}{p_{1 j} s+p_{0 j}(1-s)} P(s \mid \text { data }) d s \\
& \begin{aligned}
P(s \mid \text { data }) & \propto \sum_{v \in 2^{N}}\left[\prod_{v_{i}=1} p_{1 i} s \times \prod_{v_{i}=0} p_{0 i}(1-s) \times P(s)\right] \\
& =\prod^{\left[p_{1 i} s+p_{0 i}(1-s)\right] P(s)}
\end{aligned}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& P\left(v_{j}=0 \mid \text { data }\right) \propto \int \frac{p_{0 j}(1-s)}{p_{1 j} s+p_{0 j}(1-s)} P(s \mid \text { data }) d s \\
& \text { it's just that data point's relative probabilities in the } \\
& \text { two distributions, weighted by the mix probability } \\
& \text { and then averaged over the mix probabilities }
\end{aligned}
$$

This is a very general idea, which can occur with many useful variations. Let's apply to Towne...

Hi, guys! Remember us?

Bayes and Bar Sinister

We can now understand that the Towne family problem is really a mixture model problem: Each VLSTR sample is either from a descendent of William Towne or from the descendent of a "nonpaternal event". We are given an unknown mixture of such samples.

Arms of Sir Charles Beauclerk, 1st Duke of St Albans, bastard son of King Charles II by Nell Gwynn

Our model will have 3 unknown parameters:
r mutation probability per locus per generation
c non-paternal probability per generation
Modeling L as a constant is rather
L if non-paternal, number of generations back to LCA
crude, but will illustrate the point. If this really mattered, we'd need to do a better job here.

The model is:

```
pmix = @k, n, l oci,r,c,lca) (1-c). ~n * bi n(k, n*loci,r) ...
    +(1-(1-c). n) * bi n(k,(n+Hca)*loci,r);
model 2 = @r,c,l ca) pmi x(23,10,37,r,c,lca) .* pmix(5,9,37,r,c,lca)...
    .* pmix(0, 3, 37, r,c,l ca).* pmi x(0, 3, 37, r,c,l ca)...
    * pmi x (1, 5, 37,r,c,l ca) .* pmi x(0,5,37,r,c,l ca)...
    * pmi x(0,6, 37,r,c,lca).* pmi x(1, 11, 37,r,c,lca)...
    .* pmi x(3,10,37,r,c,l ca) .* pmi x(4, 10, 12, r, c, l ca) . / r;
```

Notice that we now include all the data, especially clearly non-paternal T2.

So that we don't get lost in MATLAB semantics...

ndgrid

Generate arrays for N-D functions and interpolation

Syntax

```
[X1,X2,X3,\ldots] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)
```


Description

$[\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots]=$ ndgrid $(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \ldots)$ transforms the domain specified by vectors $x 1, x 2, x 3 \ldots$ into arrays $X 1, X 2, X 3 \ldots$ that can be used for the evaluation of functions of multiple variables and multidimensional interpolation. The ith dimension of the output array Xi are copies of elements of the vector xi.

arrayfun

Apply function to each element of array

Syntax

```
A = arrayfun(fun, S)
A = arrayfun(fun, S, T, ...)
[A, B, ...] = arrayfun(fun, S, ...)
[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)
```


Description

A = arrayfun(fun, S) applies the function specified by fun to each element of array S, and returns the results in array A. The value A returned by arrayfun is the same size as S , and the ($\mathrm{I}, \mathrm{J}, \ldots$) th element of A is equal to $\operatorname{fun}(\mathrm{S}(\mathrm{I}, \mathrm{J}, \ldots)$). The first input argument fun is a function handle to a function that takes one input argument and returns a scalar value. fun must return values of the same class each time it is called.
squeeze
Remove
singleton
dimensions
Syntax
B $=$
squeeze (A)

Description

$B=$ squeeze (A)
returns an array B
with the same
elements as A,
but with all singleton dimensions removed. A singleton dimension is any dimension for which $\operatorname{size}(\mathrm{A}, \operatorname{dim})=1$

We evaluate the model over a 3-dimensional grid of parameters, and

 then normalize it.```
rvals = del : del : 0. 02;
cvals = [. 002 . 005 . 01 . 02 . 03 . 06 . 1 . 2]
lcavals =[[25 50 100 200]
[rgrid cgrid lcagrid] = ndgrid(rvals,cvals,lcavals);
f2vals = arrayfun(model 2, rgrid, cgrid,l cagrid);
f2vals = f2vals ./ sumf2vals(:))
priors are implicit in the spacing of
the grids, here approximately
logarithmic; each grid cell is taken as
 equiprobable
```


## We get individual parameter distributions by marginalization

```
f2r = sumsum(f2val s, 3), 2); Hint: use size() to debug this kind of stuff!
f2c = sum(sum(f2val s, 3), 1);
f2lca = sumfsqueeze(sumf2val s,1)),1);
pl ot (rvals,f2r./ del ,' - g');
semi l ogx(cvals,f2c,' : or');
semi l ogx(l caval s, f2l ca,' : og');
```




## Calculate mixture probabilities by

$$
P\left(v_{j}=0 \mid \text { data }\right) \propto \int \frac{p_{0 j}(1-s)}{p_{1 j} s+p_{0 j}(1-s)} P(s \mid \text { data }) d s
$$

## now with additional marginalizations over $\mathrm{r}, \mathrm{c}, \mathrm{L}$ :


father was a sailor!

```
function p = nonpat prob(k, n, l oci, rgrid, cgrid,l cagrid, f 2val s)
 p = squeeze(sum
 function p = ppat(r,c,l ca)
 pl = (l-c). n * poisspdf(k, n*loci*r);
 p2 = (1-(1-c). \n) * poisspdf(k,(n+Hca)*loci *r);
 p = p2/(p1+p2)
 end
```

end
for $k=0$ : 12, gen9 $(k+1)=$ nonpat $\operatorname{prob}(k, 9,37, r g r i d, c g r i d, l$ cagrid, f 2vals); end
for $k=0$ : 12, genlo( $k+1$ ) = nonpat prob( $k, 10,37$, rgrid, cgrid, lcagrid, f 2vals); end
for $k=0$ : 12, genll( $k+1$ ) $=$ nonpat prob( $k, 11,37$, rgrid, cgrid, lcagrid, f2vals); end
pl ot ([ O: 12], gen9, ' : or' )
pl ot ([ 0: 12], gen10, ' : og' )
pl ot ([ 0: 12], gen11, ' : ob' )

## And the answers are...



```
p13 = nonpat prob(4, 10, 12, rgrid,cgrid,l cagrid, f2vals)
```

p13 =
0. 8593

So, by Bayesian statistical modeling, T11 fought his way back to legitimacy. I guess this a happy ending.

Confession: the above picture is not quite right, because I found a bug in the code and didn't redo the picture.
Could somebody try to redo this and post it on the course website?

## Hi, guys! Remember us?



Hierarchical Bayesian models (just a mention here):
Actually, l'd guess that our LCA model is too crude: no single $L$ is consistent with both T2 and T11, so our model "promoted" T11 to legitimacy. I bet that T11 is a non-paternal event with a distant cousin!
What is really needed is a distribution of L's.
Old model: L is a fixed parameter to be estimated.

$$
\begin{aligned}
p_{\text {mix }}(k, n, M \mid r, c, L) \equiv & (1-c)^{n} p_{\operatorname{Bin}}(k, n M, r) \\
& +\left[1-(1-c)^{n}\right] p_{\operatorname{Bin}}(k,(n+L) M, r) \\
p(r, c, L \mid \text { data }) \propto & \prod_{\text {Townes }} p\left(k_{i}, n_{i}, M_{i} \mid r, c, L\right) P(r, c, L)
\end{aligned}
$$

Hierarchical model: L is drawn from a distribution, separately for each
Towne

$$
\begin{aligned}
L & \sim \operatorname{Gamma}(\alpha, \beta) \\
p(r, c, \alpha, \beta \mid \text { data }) \propto & \prod_{\text {Townes }}\left[\int p\left(k_{i}, n_{i}, M_{i} \mid r, c, L_{i}\right) p_{\text {Gamma }}\left(L_{i} \mid \alpha, \beta\right) d L_{i}\right] \\
& \times P(r, c, \alpha, \beta)
\end{aligned}
$$

What makes this "hierarchical" is that $L_{i}$, a parameter in one piece of the model is an RV (dependent on "hyper-parameters") in another piece.

## Gaussian Mixture Models (GMMs)

- Yet another method for fitting multiple Gaussians to (possibly) a set of multidimensional data points
- properties of Gaussians are used in detail: doesn't easily generalize to other fitting functions
- But uses the raw data points
- no binning!
- hence useful in multidimensions
- Exemplifies Expectation Maximization (EM) methods
- an important class of methods (Dempster, Laird, \& Rubin)
- we'll show some theory later
- Let's first try it in 1-D on the data set of exon lengths

```
g = readgenestats('genestats.dat');
```

exons = cell 2mat (g. exonl en);
hi st ( I oglo( exons), 50)


$$
\text { dat } a=1 \text { oglo( exons }(\text { I oglo (exons) }>1
$$

$$
\text { \& } \log 10(\text { exons })<4) \text { ) }
$$

hi st (data, 50)


Key to the notational thicket:

$$
M \text { dimensions }
$$

$k=1 \ldots K$ Gaussians "components"
$n=1 \ldots N$ data points
$P(k)$ population fraction in $k$
$P\left(\mathbf{x}_{n}\right)$ model probability at $\mathbf{x}_{n}$

$\boldsymbol{\mu}_{k} \quad$ (the $K$ means, each a vector of length $M$ )
$\boldsymbol{\Sigma}_{k} \quad$ (the $K$ covariance matrices, each of size $M \times M$ )
$P(k \mid n) \equiv p_{n k} \quad$ (the $K$ probabilities for each of $N$ data points)
"probabilistic assignment" of a data point to a component!
$\mathscr{L}=\prod_{n} P\left(\mathbf{x}_{n}\right) \quad$ overall likelihood of the model
$P\left(\mathbf{x}_{n}\right)=\sum_{l} N\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \mathbf{\Sigma}_{k}\right) P(k) \quad$ specify the model as a mixture of Gaussians
$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{M / 2} \operatorname{det}(\boldsymbol{\Sigma})^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}) \cdot \boldsymbol{\Sigma}^{-1} \cdot(\mathbf{x}-\boldsymbol{\mu})\right]$

Goal is to find all of the above, starting with only the $\mathbf{x}_{n}$
(So far this could be frequentist or Bayesian, although it was invented by frequentists.)

