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Mixture Models

Suppose we have N independent events, i=1…N.
Each might be from distribution 0 or distribution 1, but 
we don’t know which (2-component mixture)

But we do know the respective probabilities for each i,

We want a (probabilistic) assignment of each event to 0 or 1.

Suppose s is the fraction of events in distribution 1,

That is everything we need to know to write down a “forward” model for the 
probability of the data, given the (known and unknown) quantities:

Suppose                                       is an assignment of each event to a distribution
e.g.,                                       

observed events (unknown mixture)

distributions for 
each component

s doesn’t enter directly, but it is a 
“hyperparameter” that affects the 
distribution of v’s
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Now do the Bayes thing!

That is the complete model, usually too much to comprehend directly.
Instead, we are usually interested in various marginalizations.  For example:

prior on the mixtureprob of i in the mixture distribution

key step is here: (multiply it out!)
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Even more interesting is the marginalization that gives the assignment of each 
data point to one distribution or the other:

and similarly

it’s just that data point’s relative probabilities in the 
two distributions, weighted by the mix probability

and then averaged over the mix probabilities

This is a very general idea, which can occur with 
many useful variations.  Let’s apply to Towne…
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N=9

N=10

N=11

N=6

N=1

N=3

=23

=5

=1 =0

=0

=1

=3 =4 (of 12)

=0

=0

bin(1,11x37,r)

bin(3,10x37,r)

bin(0,3x37,r)

bin(0,3x37,r)

bin(0,6x37,r)

bin(1,5x37,r) bin(0,5x37,r)

Hi, guys!  Remember us?

Are T2 and T11 
descendents or were 
there “non-paternal 
events”?

And T13?
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Arms of Sir Charles Beauclerk, 1st 
Duke of St Albans, bastard son of 
King Charles II by Nell Gwynn

Bayes and Bar Sinister

We can now understand that the Towne family 
problem is really a mixture model problem: Each 
VLSTR sample is either from a descendent of 
William Towne or from the descendent of a “non-
paternal event”.  We are given an unknown mixture 
of such samples.

Our model will have 3 unknown parameters:
r mutation probability per locus per generation
c non-paternal probability per generation
L if non-paternal, number of generations back to LCA

Modeling L as a constant is rather 
crude, but will illustrate the point.  If 
this really mattered, we’d need to 
do a better job here.

pmix = @(k,n,loci,r,c,lca) (1-c).^n * bin(k,n*loci,r) ...
+ (1-(1-c).^n) * bin(k,(n+lca)*loci,r);

model2 = @(r,c,lca) pmix(23,10,37,r,c,lca) .* pmix(5,9,37,r,c,lca)...
.* pmix(0,3,37,r,c,lca).* pmix(0,3,37,r,c,lca)...

.* pmix(1,5,37,r,c,lca) .* pmix(0,5,37,r,c,lca)...

.* pmix(0,6,37,r,c,lca).* pmix(1,11,37,r,c,lca)...

.* pmix(3,10,37,r,c,lca) .* pmix(4,10,12,r,c,lca) ./ r;

The model is:

Notice that we now include all the data, especially clearly non-paternal T2.
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So that we don’t get lost in MATLAB semantics…
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rvals = del:del:0.02;
cvals = [.002 .005 .01 .02 .03 .06 .1 .2]
lcavals = [25 50 100 200]
[rgrid cgrid lcagrid] = ndgrid(rvals,cvals,lcavals);
f2vals = arrayfun(model2,rgrid,cgrid,lcagrid);
f2vals = f2vals ./ sum(f2vals(:))

We evaluate the model over a 3-dimensional grid of parameters, and 
then normalize it.

priors are implicit in the spacing of 
the grids, here approximately 
logarithmic; each grid cell is taken as 
equiprobable

We get individual parameter distributions by marginalization
f2r = sum(sum(f2vals,3),2);
f2c = sum(sum(f2vals,3),1);
f2lca = sum(squeeze(sum(f2vals,1)),1);
plot(rvals,f2r./del,'-g');
semilogx(cvals,f2c,':or');
semilogx(lcavals,f2lca,':og');

previous model

Hint: use size() to debug this kind of stuff!

r (mutation probability)
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c (non-paternal probability per generation) L (generations to LCA)
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for k=0:12, gen9(k+1) = nonpatprob(k,9,37,rgrid,cgrid,lcagrid,f2vals); end
for k=0:12, gen10(k+1) = nonpatprob(k,10,37,rgrid,cgrid,lcagrid,f2vals); end
for k=0:12, gen11(k+1) = nonpatprob(k,11,37,rgrid,cgrid,lcagrid,f2vals); end
plot([0:12],gen9,':or')
plot([0:12],gen10,':og')
plot([0:12],gen11,':ob')

Calculate mixture probabilities by

father was a sailor!

function p = nonpatprob(k,n,loci,rgrid,cgrid,lcagrid,f2vals)
p = squeeze(sum(sum(sum(  arrayfun(@ppat,rgrid,cgrid,lcagrid) .* f2vals  ,3),2),1));

function p = ppat(r,c,lca)
p1 = (1-c).^n * poisspdf(k,n*loci*r);
p2 = (1-(1-c).^n) * poisspdf(k,(n+lca)*loci*r);
p = p2/(p1+p2)

end

end

now with additional marginalizations over r,c,L:
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p13 = nonpatprob(4,10,12,rgrid,cgrid,lcagrid,f2vals)
p13 =

0.8593

And the answers are…

Towne

non-paternal T2

T11T5

T6,T3

T8,T4

T13 partial data
(below)

So, by Bayesian statistical modeling, T11 fought his way back to legitimacy.  I 
guess this a happy ending.

Confession:  the above picture is not quite right, because I found a bug in the code and didn’t redo the picture.  
Could somebody try to redo this and post it on the course website?
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Hi, guys!  Remember us?
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Hierarchical Bayesian models (just a mention here):

Actually, I’d guess that our LCA model is too crude: no single L is consistent 
with both T2 and T11, so our model “promoted” T11 to legitimacy.  I bet that T11 
is a non-paternal event with a distant cousin!
What is really needed is a distribution of L’s.

Old model:  L is a fixed parameter to be estimated.

Hierarchical model:  L is drawn from a distribution, separately for each 
Towne

L ∼ Gamma(α,β)

p(r, c,α,β|data) ∝
Y

Townes

∙Z
p(ki, ni,Mi|r, c, Li)pGamma(Li|α,β)dLi

¸
× P (r, c,α,β)

pmix(k, n,M |r, c, L) ≡ (1− c)npBin(k, nM, r)
+ [1− (1− c)n]pBin(k, (n+ L)M, r)

p(r, c, L|data) ∝
Y

Townes

p(ki, ni,Mi|r, c, L)P (r, c, L)

What makes this “hierarchical” is that Li, a parameter in one piece of the model 
is an RV (dependent on “hyper-parameters”) in another piece.
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Gaussian Mixture Models (GMMs)
• Yet another method for fitting 

multiple Gaussians to 
(possibly) a set of multi-
dimensional data points
– properties of Gaussians are 

used in detail: doesn’t easily 
generalize to other fitting 
functions

• But uses the raw data points
– no binning!
– hence useful in 

multidimensions
• Exemplifies Expectation 

Maximization (EM) methods
– an important class of methods 

(Dempster, Laird, & Rubin)
– we’ll show some theory later

• Let’s first try it in 1-D on the 
data set of exon lengths

g = readgenestats('genestats.dat');
exons = cell2mat(g.exonlen);
hist(log10(exons),50)

data = log10(exons(log10(exons)>1 
& log10(exons)<4));
hist(data,50)

(Let’s trim the outliers.)
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“probabilistic assignment” of a data point to a component!

overall likelihood of the model

specify the model as a mixture of Gaussians

M dimensions
k = 1 . . .K Gaussians
n = 1 . . . N data points
P (k) population fraction in k
P (xn) model probability at xn

Key to the notational thicket:

Goal is to find all of the above, starting with only the 

“components”

(So far this could be frequentist or Bayesian, although it was invented by frequentists.)


