
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 14



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

Let’s turn from (x,y,) data to data that comes as counts of things.

Two common examples are “binned values” (histograms) and contingency tables.

Counts are distributed according to (in general, unknown) probabilities pi or pij
across the bins or table entries.  The model (with parameters maybe) predicts 
the p’s.

ni ∼ Binomial(N, pi) {ni} ∼Multinomial(N, {pi})or more precisely,

For histograms (but not necessarily contingency tables) one commonly has

ni ¿ N ⇒ pi ¿ 1 for all i



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

Binomial(n,N, p)⇒

P (n) =
N !

n!(N − n)!p
n(1− p)N−n

=
1

n!

N !

(N − n)!p
ne(N−n) ln(1−p)

≈ 1

n!
(Np)ne−(Np)

∼ Poisson(Np)

ni ¿ N ⇒ pi ¿ 1 for all i implies that counts are (close to) Poisson distributed

Sometimes this is not even an approximation, but exact because of how the 
data is gathered.  Everyone’s favorite example: radioactive decays.

x ∼ Poisson(λ)⇒ μ(x) = λ, Var(x) = λAlso recall,

It depends on whether N was a constraint, or “just happened”.  We will return to this 
issue when we discuss contingency tables: details of the exact protocol can subtly affect 
the statistics of the result.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

exloglen = log10(cell2mat(g.exonlen));
[count cbin] = hist(exloglen,(1:.1:4));
count = count(2:end-1); % trim ends, which have overflow counts
cbin = cbin(2:end-1);
ecount = sqrt(count+1);
bar(cbin,count,'y')

“pseudo-count”

The histogram we just saw is biological:
It’s the distribution of log10 of exon lengths in human.

χ2 =
X
i

(ni −Npi)2
Npi

χ2 =
X
i

(ni −Npi)2
ni + α

but people often use

“pseudo-count”

Why do they do this?
1.  It’s the numerator that drives the fit to the data.  Denominator shouldn’t matter much.
2.  Many NLS algorithms/packages require ’s as input and can’t fit them from a model.
3.  Having the model in the denominator makes it more likely that you’ll converge to a 
spurious local minimum (never recover from an iteration with a very small pi).

“Pearson”
“(O-E)2 / E”

“(O-E)2 / Om”

“modified 
Neyman”



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

1. The pseudocount can be thought of as resulting from a power-law prior on 

function [beta r J Covar mse] = nlinfitw(x,y,sig,model,guess)
yw = y./sig;
modelw = @(b,x) model(b,x) ./ sig;
[beta r J Covar mse] = nlinfit(x,yw,modelw,guess);
Covar = Covar ./ mse; % undo Matlab's perhaps well-intentioned scaling

2. We mentioned in class Matlab’s lack of a weighted nonlinear fit function.  
We can make one out of their unweighted function nlinfit (they have a help 
page telling how to do this):

The Neyman 2 (previous slide) fits into this common interface to nonlinear 
least square (NLS), while the Pearson (truer) 2 doesn’t.

dP
dλ = 0⇒ λ = n

d(Pλα)
dλ = 0⇒ λ = n+ α

Two asides:

P (n,λ) ∝ λne−λ



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 6

modeloneg = @(b,x) b(1).*exp(-0.5.*((x-b(2))./b(3)).^2);
guess = [3.5e4 2.1 .3];
[bfit r J Covar mse] = nlinfitw(cbin,count,ecount,modeloneg,guess);
bfit, Covar, mse
stderr = sqrt(diag(Covar))
plot(cbin,modeloneg(bfit,cbin),'b')
bfit =

29219       2.0966      0.23196
Covar =

8513   -0.0012396     -0.02769
-0.0012396  3.1723e-007   9.833e-009

-0.02769   9.833e-009  2.1986e-007
mse =

849.37
stderr =

92.266
0.00056323
0.0004689

Fit a single Gaussian (of course, it’s in log space)

“mean square error”

OK, we’re ready to fit a model to the exon length data.

mse is just another name for 2/N, 
so it should be ~1 for a good fit



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 7

Fit sum of two Gaussians:
This time, we’ll put the model function into an external file:

Although it seems to capture the data 
qualitatively, this is still a bad fit.  
Whether this should worry you or not 
depends completely on whether you 
believe the model should be “exact”

function y = modeltwog(b,x)
y = b(1).*exp(-0.5.*((x-b(2))./b(3)).^2) + ...

b(4).*exp(-0.5.*((x-b(5))./b(6)).^2);

guess2 = [guess 3000 3. 0.5];
[bfit2 r2 J2 Covar2 mse2] = nlinfitw(cbin,count,ecount,@modeltwog,guess2);
bfit2, sqrt(diag(Covar2)), mse2
plot(cbin,modeltwog(bfit2,cbin),'r')
hold off
bfit2 =

30633       2.0823      0.21159       2732.5       2.8998      0.37706
ans =

99.609
0.00069061
0.00056174

23.667
0.0069429
0.0041877

mse2 =
163.44



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 8

We keep getting these big mse’s!
Let’s verify that mse ~ 1 is what you should get for a perfect model:
perfect = 2.0 .* randn(10000,1) + 4.;
[count cbin] = hist(perfect,(-1:.2:9));
count = count(2:end-1);
cbin = cbin(2:end-1);
ecount = sqrt(count+1);
[bfit r J Sigma mse] = nlinfitw(cbin,count,ecount,modeloneg,guess);
bfit, Sigma, mse
bfit =

393.27       4.0159       2.0201
Sigma =

25.784   -0.0005501    -0.057248
-0.0005501   0.00046937  3.5555e-006
-0.057248  3.5555e-006   0.00032997

mse =
0.95507

chisq = numel(count)*mse
df = numel(count)-3;
pvalue = chi2cdf(chisq,df)
chisq =

46.799
pvalue =

0.56051

If you expect the model to be exact, then take the p-value seriously.

If you don’t, it is called “chi-by-eye” (term used as an insult in the physical 
sciences).

It’s OK when the intent of the model is to summarize main features of the data 
without necessarily fitting it exactly.

three fitted parameters
by definition, mse times number of bins equals chi-square

Let’s see if 0.955 is actually good enough:

yep, good enough!



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 9

You can get a statistic that is “accurately” chi-square either by summing 
(any number of) terms that are accurately squares of Normal t-values, 
or by summing a large number of terms that individually have the 
correct mean and variance.  This uses the CLT, so the exactness of 
chi-square is no better than its normal approximation.

Compute moments of chi-square with 1 d.f.:

So, μ = 1, σ2 = 3− 1 = 2

Hence, Chisquare(ν)→ Normal(ν,
√
2ν) as ν →∞

The Poisson-count pitfall: χ2 =
X
i

(xi − μi)2
μi

is actually not Chisquare !



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 10

If you are going to rely on the CLT and sum up lots of not-exactly-t bins, they must 
have the expected mean and variance.

Poisson doesn’t have. (People often get this wrong!)

OK

OK

OK

Not OK!



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 11

We now know that this 2 is not Chi-square distributed!  Rather, 
asymptotically,

What about bins with  near zero?
(Decide in advance!)χ2 ∼ Normal

Ã
ν, 2ν +

X
i

μ−1i

!
χ2 =

X
i

(xi − μi)2
μi

poi = @(n,mu) exp(-mu).*mu.^n./factorial(n);
mus = [0.1 0.5 1.0 1.5 2.0 3 5 7 10 20 30];
nsum = 200;
for j=1:numel(mus),

mu = mus(j);
pois = poi(0:nsum,mu);
ts = ((0:nsum)-mu).^2 ./ mu;
tas = ((0:nsum)-mu).^2 ./ ((0:nsum)+1);
tmean = sum(ts.*pois);
tamean = sum(tas.*pois);
tvar = sum(ts.^2.*pois)-tmean^2;
tavar = sum(tas.^2.*pois)-tamean^2;
fprintf(1,'%4.1f %8.5f %8.5f %8.5f

%8.5f\n',mu,tmean,tamean,tvar,tavar);
end

0.1  1.00000  0.05147 12.00000  0.01954
0.5  1.00000  0.27061  4.00000  0.05447
1.0  1.00000  0.52848  3.00000  0.25011
1.5  1.00000  0.73696  2.66667  0.80999
2.0  1.00000  0.89099  2.50000  1.70583
3.0  1.00000  1.06780  2.33333  3.85907
5.0  1.00000  1.15149  2.20000  6.40207
7.0  1.00000  1.13452  2.14286  6.24527

10.0  1.00000  1.09945  2.10000  4.88251
20.0  1.00000  1.05000  2.05000  3.10583
30.0  1.00000  1.03333  2.03333  2.68296

χ2 =
X
i

(ni −Npi)2
ni + α

I wonder if Modified Neymann, is any closer to true chisquare?

Wow, it’s much worse!  I never knew that!
Verdict: Don’t use Modified Neymann for a goodness-
of-fit test unless the number of counts is way large!

Poisson, Pearson chi-square statistic:



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 12

Remember our three ways of computing the uncertainty in other quantities?

For example, what if we want the ratio of areas in the two Gaussians?

Method 1: Linearized propagation of errors

mu = bfit(1)*bfit(3)./(bfit(4)*bfit(6))
sigma = sqrt(grad’ * Covar2 * grad)
mu =

6.2911
sigma =

0.096158

function y = modeltwog(b,x)
y = b(1).*exp(-0.5.*((x-b(2))./b(3)).^2) + ...

b(4).*exp(-0.5.*((x-b(5))./b(6)).^2);

Recall the meaning of the b’s:

ratio of the areas

its standard error

We start off in Mathematica:

And then switch to MATLAB, yikes!

Mathematicaology!



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

Method 2: Sample from the posterior distribution

samp = mvnrnd(bfit2,Covar2,1000);
samp(1:5,:)
ans =

30430        2.082      0.21203       2754.6       2.8975      0.37636
30421       2.0829      0.21213       2701.1       2.9026      0.37738
30645       2.0815      0.21125       2775.3       2.8969      0.37969
30548       2.0822      0.21229       2714.7       2.9011      0.37712
30607       2.0826      0.21175         2718       2.9016      0.37779

funcsam = (samp(:,1).*samp(:,3))./(samp(:,4).*samp(:,6));
funcsam(1:5)
ans =

6.2234
6.3307
6.1437
6.3346
6.3116

hist(funcsam,[5.9:0.025:6.7]);
mu = mean(funcsam)
sigma = std(funcsam)
mu =

6.2911
sigma =

0.096832

multivariate Normal random generator



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 14

function mu = areasboot(data)
samp = randsample(data,numel(data),true);
[count cbin] = hist(samp,(1:.1:4));
count = count(2:end-1);
cbin = cbin(2:end-1);
ecount = sqrt(count+1);
guess = [3.5e4 2.1 .3 3000 3. 0.5];
[bfit r J Covar mse] = nlinfitw(cbin,count,ecount,@modeltwog,guess);
mu = (bfit(1)*bfit(3))/(bfit(4)*bfit(6));

Method 3:
Bootstrap

areas = arrayfun(@(x) areasboot(exloglen), (1:1000));
mean(areas)
std(areas)
ans =

6.2974
ans =

0.095206
hist(areas,[5.9:0.025:6.7]); recall, sampling from the posterior gave:

takes about 1 min on my machine

bootstrap posterior

list of individual exon lengths.  
Notice that we resample before
(re-)binning.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 15

Everything works out nicely here because we have lots of data.
We are in “asymptopia”!

But remember that we did “chi by eye” here.  (The model is not a perfect fit.)

Our value and uncertainty “are what they are” within the imperfect model.  
They have no magical power to peer into the underlying heart of nature!

We’ll come back to this data set later. 

Ratio of areas = 6.3± 0.1


