CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin
Lecture 14

Let's turn from (x, y, σ) data to data that comes as counts of things.
Two common examples are "binned values" (histograms) and contingency tables.

Counts are distributed according to (in general, unknown) probabilities p_{i} or $p_{i j}$ across the bins or table entries. The model (with parameters maybe) predicts the p's.
$n_{i} \sim \operatorname{Binomial}\left(N, p_{i}\right) \quad$ or more precisely, $\quad\left\{n_{i}\right\} \sim \operatorname{Multinomial}\left(N,\left\{p_{i}\right\}\right)$
For histograms (but not necessarily contingency tables) one commonly has

$$
n_{i} \ll N \Rightarrow p_{i} \ll 1 \text { for all } i
$$

$n_{i} \ll N \Rightarrow p_{i} \ll 1$ for all i implies that counts are (close to) Poisson distributed
$\operatorname{Binomial}(n, N, p) \Rightarrow$

$$
\begin{aligned}
P(n) & =\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n} \\
& =\frac{1}{n!} \frac{N!}{(N-n)!} p^{n} e^{(N-n) \ln (1-p)} \\
& \approx \frac{1}{n!}(N p)^{n} e^{-(N p)} \\
& \sim \operatorname{Poisson}(N p)
\end{aligned}
$$

Sometimes this is not even an approximation, but exact because of how the data is gathered. Everyone's favorite example: radioactive decays.

It depends on whether N was a constraint, or "just happened". We will return to this issue when we discuss contingency tables: details of the exact protocol can subtly affect the statistics of the result.

$$
\text { Also recall, } \quad x \sim \operatorname{Poisson}(\lambda) \Rightarrow \mu(x)=\lambda, \operatorname{Var}(x)=\lambda
$$

The histogram we just saw is biological:

It's the distribution of log10 of exon lengths in human.

```
exl ogl en = l oglO(cel | 2mat (g. exonl en));
[count cbi n] = hi st(exl ogl en,(1:. 1: 4));
```

count $=$ count (2 : end-1); \%trimends, which have overflow counts
cbi $n=c b i n(2:$ end- 1$)$;
"pseudo-count"
ecount $=$ sqrt(count +1)
bar (cbi n, count, ' y ')

$$
\chi^{2}=\sum_{i} \frac{\left(n_{i}-N p_{i}\right)^{2}}{N p_{i}} \quad \text { "Pearson" }
$$

but people often use

$$
\chi^{2}=\sum_{i} \frac{\left(n_{i}-N p_{i}\right)^{2}}{n_{i}+\alpha} \quad \begin{gathered}
\text { "modified } \\
\text { Neyman" } \\
\text { "(O-E) })^{2} / \mathrm{O}_{\mathrm{m}} "
\end{gathered}
$$

Why do they do this?

1. It's the numerator that drives the fit to the data. Denominator shouldn't matter much.
2. Many NLS algorithms/packages require o's as input and can't fit them from a model.
3. Having the model in the denominator makes it more likely that you'll converge to a spurious local minimum (never recover from an iteration with a very small p_{i}).

Two asides:

1. The pseudocount can be thought of as resulting from a power-law prior on λ
```
ln[1]:= poi = lam^n Exp[-lam]
Out[1]= e - lam}lamn'
In[2]:= Solve[D[poi, lam] == 0, lam]
P(n,\lambda)\propto\mp@subsup{\lambda}{}{n}}\mp@subsup{e}{}{-\lambda
dP
Out[2]= {{lam }->\textrm{n}}
ln[4]:= Solve[D[poi lam^alpha, lam] == 0, lam]
Out[4]= {{lam }->\mathrm{ alpha + n} }
\[
\begin{aligned}
& P(n, \lambda) \propto \lambda^{n} e^{-\lambda} \\
& \frac{d P}{d \lambda}=0 \Rightarrow \lambda=n \\
& \frac{d\left(P \lambda^{\alpha}\right)}{d \lambda}=0 \Rightarrow \lambda=n+\alpha
\end{aligned}
\]
```

2. We mentioned in class Matlab's lack of a weighted nonlinear fit function. We can make one out of their unweighted function nlinfit (they have a help page telling how to do this):
```
function [beta r J Covar mse] = nl i nfitw(x,y,sig, model,guess)
yw = y./si g;
model w = ab,x) model (b,x) ./ sig;
[beta r J Covar mse] = nl i nfit(x,yw, model w, guess);
Covar = Covar ./ mse; % undo Mat/ab's perhaps mel/-intentioned scaling
```

The Neyman χ^{2} (previous slide) fits into this common interface to nonlinear least square (NLS), while the Pearson (truer) χ^{2} doesn't.

OK, we're ready to fit a model to the exon length data.
Fit a single Gaussian (of course, it's in log space)

```
model oneg =@b,x) b(1).*exp(-0.5.*((x-b(2))./b(3)). -2);
guess =[3.5e4 2.1 . 3];
[bfit r J Covar mse] = nlinfitw(cbin,count, ecount, model oneg, guess);
bfit, Covar, mse
stderr = sqrt(di ag(Covar))
pl ot (cbi n, model oneg( bfit, cbi n),' b' )
bfit=
    29219 2.0966 0.23196
Covar =
    8513 
moe=
849.37 "mean square error"
stderr =
        92. }26
    0.00056323
        0.0004689
mse is just another name for \(\chi^{2} / N\), so it should be \(\sim 1\) for a good fit
```


Fit sum of two Gaussians:

This time, we'll put the model function into an external file:

```
function }y=m\mathrm{ modeltnog( }b,x
y =b(1).*exp(-0.5.*((x-b(2))./b(3)). -2) +...
    b(4).*exp(-0. 5.*((x-b(5))./b(6)). -2);
guess2 = [guess 3000 3. 0. 5];
[bfit2 r2 J2 Covar2 mse2] = nlinfitu(cbin,count, ecount, @rodel t wog, guess2);
bfit2, sqrt(di ag(Covar 2)), nse2
pl ot (cbi n, model t nog( bfit2, cbi n),'r')
hol d of f
bfit2=
    30633 2.0823
ans =
        99.609
    0.00069061
    o. 00056174
        23. 667
        0.0069429
        o.0041877
nse2 =
        163.44
Although it seems to capture the data qualitatively, this is still a bad fit. Whether this should worry you or not depends completely on whether you believe the model should be "exact"
```


We keep getting these big mse's!

Let's verify that mse ~ 1 is what you should get for a perfect model:

```
perfect = 2.0 .* randn(10000, 1) + 4.;
[count cbi n] = hi st(perfect,(-1:. 2: 9));
count = count(2: end-1);
cbi n = cbi n( 2: end- 1);
ecount = sqrt(count+1);
[bfit r J Si gra mse] = nlinfitw(cbi n, count,ecount,model oneg, guess);
bfit, Sigma, mse
bfit =
            393.27 4.0159 2.0201
Sigm* =
            25.784 -0.0005501 - 0.057248
        -0.0005501 0.00046937 3.5555e-006
        -0.057248 3.5555e-006 0.00032997 Let's see if 0.955 is actually good enough:
mse = 0.95507 by definition, mse times number of bins equals chi-square
chisq = nurel (count)*nse & three fitted parameters
df = nurrel (count)-3;
pval ue = chi 2cdf(chisq, df)
chisq =
            46. }799\mathrm{ yep, good enough!
pval ue =
0. 56051
```

If you expect the model to be exact, then take the p-value seriously.
If you don't, it is called "chi-by-eye" (term used as an insult in the physical sciences).

It's OK when the intent of the model is to summarize main features of the data without necessarily fitting it exactly.

The Poisson-count pitfall: $\quad \chi^{2}=\sum_{i} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\mu_{i}} \quad$ is actually not Chisquare !
You can get a statistic that is "accurately" chi-square either by summing (any number of) terms that are accurately squares of Normal t-values, or by summing a large number of terms that individually have the correct mean and variance. This uses the CLT, so the exactness of chi-square is no better than its normal approximation.

Compute moments of chi-square with 1 d.f.:

```
    ln[31]:= py = (1/(Sqrt[2 Pi y])) Exp[-(1/2) y]
Out[31]=
        \frac{\mp@subsup{e}{}{-\textrm{y}/2}}{\sqrt{}{2\pi}\sqrt{}{\textrm{Y}}}
    In[32]:= Integrate[py {1, y, y^2}, {y, 0, Infinity}]
```

Out[32]=
$\{1,1,3\}$

So, $\mu=1, \quad \sigma^{2}=3-1=2$
Hence, $\operatorname{Chisquare~}(\nu) \rightarrow \operatorname{Normal}(\nu, \sqrt{2 \nu})$ as $\nu \rightarrow \infty$

If you are going to rely on the CLT and sum up lots of not-exactly-t bins, they must have the expected mean and variance.

Poisson doesn't have. (People often get this wrong!)

```
* In[39]:= poi[n_] := Exp[-mu] mu^n /n!
    In[48]:= poimean = Sum[ n poi[n], {n, 0, Infinity}]
Out[48]=
            mu OK
    ln[50]:= poivar =
            Simplify[Sum[n^2 poi[n], {n, 0, Infinity}] -
                poimean^2]
Out[50]=
            mu OK
    ln[51]:= tmean = Sum[ ((n-mu) ^2 /mu) poi[n], {n, 0, Infinity}]
Out[51]=
            1 OK
            tvar =
            Simplify[
                Sum[ ((n-mu)^2 /mu)^2 poi[n], {n, 0, Infinity}] -
                tmean^2]
Out[53]=
            2+\frac{1}{mu}}\mathrm{ Not OK!
```

Poisson, Pearson chi-square statistic: $\quad \chi^{2}=\sum_{i} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\mu_{i}}$
We now know that this χ^{2} is not Chi-square distributed! Rather, asymptotically,

I wonder if Modified Neymann, $\quad \chi^{2}=\sum_{i} \frac{\left(n_{i}-N p_{i}\right)^{2}}{n_{i}+\alpha} \quad$ is any closer to true chisquare?

```
poi = @(n,m) exp(-me). *me. \n./factori al (n);
mus =[[0.1 0.5 1.0 1. 5 2.0 3 5 7 1.0 10 20 30];
nsum = 200;
for j =1: numel (mus),
    mu = mus(j);
    pois = poi (O: nsum mu);
    ts = ((O: nsum)-mu). へ2 . / mu;
    tas = ((O: nsum)-m). -2 ./ ((O: nsum) +1);
    tmean = sum(ts.*pois);
    tamean = sumtas.*pois);
    tvar = sum(ts. ^2.*poi s) - tmean`2;
    tavar = sumtas. -2.*pois)-tamean`2;
    f pri ntf (1,' %4. 1f %. %f %. 5f %.5f
        %.5f\n' , me, t mean, t amean, t var, tavar) ;
end
```

0.1	1.00000	0.05147	12.00000	0.01954
0.5	1.00000	0.27061	4.00000	0.05447
1.0	1.00000	0.52848	3.00000	0.25011
1.5	1.00000	0.73696	2.66667	0.80999
2.0	1.00000	0.89099	2.50000	1.70583
3.0	1.00000	1.06780	2.33333	3.85907
5.0	1.00000	1.15149	2.20000	6.40207
7.0	1.00000	1.13452	2.14286	6.24527
10.0	1.00000	1.09945	2.10000	4.88251
20.0	1.00000	1.05000	2.05000	3.10583
30.0	1.00000	1.03333	2.03333	2.68296

Remember our three ways of computing the uncertainty in other quantities?

For example, what if we want the ratio of areas in the two Gaussians?
Method 1: Linearized propagation of errors

```
Recall the meaning of the b's: function }y=\mathrm{ model t nog( }b,x
y = b(1).*exp(-0. 5.*((x-b(2))./b(3)). 22) + ...
    b(4).*exp(-0. 5. *( (x-b(5)). /b(6)). -2);
```

We start off in Mathematica:

```
b = {b1, b2, b3, b4, b5, b6};
func = (b1 * b3) / (b4 * b6)
b1b3 sigma = sart(grad * Covarz * grad)
me}
symgrad = D[func, {b}]
sigmm =
{\frac{b3}{\textrm{b}4\textrm{b}6},0,}\frac{\textrm{b}1}{\textrm{b}4\textrm{b}6},-\frac{\textrm{b}1\textrm{b}3}{\textrm{b}\mp@subsup{4}{}{2}\textrm{b}6},0,-\frac{\textrm{b}1\textrm{b}3}{\textrm{b}4\textrm{b}\mp@subsup{6}{}{2}}
bfit2 = {30 633, 2.0823, 0.21159, 2732.5,2.8998, 0.37706};
grad = symgrad /. ToRules[b == bfit2] Mathematicaology!
{0.000205364, 0, 29.7316, -0.00230226, 0, -16.6841}
```

 6. 2911 ratio of the areas
 And then switch to MATLAB, yikes!
m, bfit(1)*bfit(3). /(bfit(4)*bfit(6))
0.096158 its standard error

Method 2: Sample from the posterior distribution

samp(1: 5, :)	multivariate Normal random generator				
30430	2. 082	o. 21203	2754. 6	2. 8975	O. 37636
30421	2. 0829	o. 21213	2701. 1	2. 9026	o. 37738
30645	2. 0815	o. 21125	2775. 3	2. 8969	O. 37969
30548	2. 0822	o. 21229	2714.7	2. 9011	O. 37712
30607	2. 0826	o. 21175	2718	2. 9016	O. 37779

funcsam 1: 5)
ans $=$
6. 2234
6. 3307
6. 1437
6. 3346
6. 3116
hi st (funcsam [5. 9: 0. 025: 6. 7]) ;
$\mathbf{m u}=$ mean(funcsam)
si grm $=$ std(funcsam)
mer $=$
6. 2911
sigme $=$
o. 096832

Bootstrap

function $m=$ areasboot (dat a)
samp = randsample(data, numel (data), true); [count cbin] = hist(samp,(1:.1:4)); count $=$ count (2: end-1); cbi $n=c b i n(2:$ end-1); ecount $=$ sqrt (count +1); guess $=\left[\begin{array}{llllll}3.5 e 4 & 2.1 & 13000 & 3 . & 0.5\end{array}\right]$; [bfit r J Covar nse] = nl infitw(cbin, count, ecount, ©prodel thog, guess);
list of individual exon lengths. Notice that we resample before (re-)binning.

$$
=(\text { bfit }(1) * b f i t(3)) /(b f i t(4) * b f i t(6)) ;
$$ $m=(b f i t(1) * b f i t(3)) /(b f i t(4) * b f i t(6)) ;$

areas $=$ arrayfun((x) ar easboot (exloglen), (1: $\mathbf{1 0 0 0})$, takes about 1 min on my machine mean(ar eas)
st d(areas)
ans $=$
6. 2974
ans $=$
0. 095206
hi st (areas, [5. 9: 0. 025: 6. 7]) ;

recall, sampling from the posterior gave:

I he Unıversity of I exas at Austın, CS 39b I, sprıng <Uค」, ヶrot. vvıIIam H. press

Everything works out nicely here because we have lots of data.
We are in "asymptopia"!

Ratio of areas $=6.3 \pm 0.1$

But remember that we did "chi by eye" here. (The model is not a perfect fit.)
Our value and uncertainty "are what they are" within the imperfect model. They have no magical power to peer into the underlying heart of nature!

We'll come back to this data set later.

