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You can give confidence intervals or regions, instead of (co-)variances

The variances of one parameter at a time imply confidence intervals 
as for an ordinary 1-dimensional normal distribution:

(Remember to take the square root of the 
variances to get the standard deviations!)

If you want to give confidence regions for more than one parameter
at a time, you have to decide on a shape, since any shape 
containing 95% (or whatever) of the probability is a 95% confidence 
region!

It is conventional to use contours of probability density as the 
shapes (= contours of 2) since these are maximally compact.

But which 2 contour contains 95% of the probability?

Small digression:
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What 2 contour in  dimensions contains some percentile probability?

Rotate and scale the covariance to make it spherical.
Contours still contain same probability.  (In equations,
this would be another “Cholesky thing”.)

Now, each dimension is an independent Normal, and contours are labeled 
by radius squared (sum of  individual t2 values), so 2  Chisquare()

You sometimes learn “facts” like: “delta 
chi-square of 1 is the 68% confidence 
level”. We now see that this is true only 
for one parameter at a time.

i.e., radius
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Good time now to review the universal rule-of-thumb (meta-theorem):

Measurement precision improves with the amount of data N as N-1/2
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Simple example:

Generic example:

2
min

b0

2
min

twice the data implies about 
twice the 2 at any b

so fixed 2 implies 2
better precision

“measurement precision” = “accuracy of a fitted parameter”



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

Until now, we have assumed that, for some value of the parameters b
the model               is correct.

That is a very Bayesian thing to do, since Bayesians start with an 
EME set of hypotheses.  It also makes it difficult for Bayesians to deal 
with the notion of a model’s goodness of fit.

Let’s discuss Goodness of Fit (at last!)

So we must now become frequentists for a bit!

Suppose that the model               does fit.  This is the null hypothesis.

Then the “statistic” is the sum of N t2-values.

So, if we imagine repeated experiments (which Bayesians refuse to do),
the statistic should be distributed as Chisquare(N).

If our experiment is very unlikely to be from this distribution, we 
consider the model to be disproved.  In other words, it is a p-value 
test.

(not quite)
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χ2(b0) = 11.13In our example,

This is a bit unlikely in Chisquare(20),
with (left tail) p=0.0569. 

How is our fit by this test?

In fact, if you had many repetitions of the experiment, you would find that 
their 2 is not distributed as Chisquare(20), but rather as Chisquare(15)!
Why?
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the magic word is:
“degrees of freedom” or DOF
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First consider a hypothetical situation where the data has
linear constraints:

p(t) =
Y
i

p(ti) ∝ exp
Ã
−12

X
i

t2i

!

χ2 is squared distance from origin
P
t2i

joint distribution on all the 
t’s, if they are independent

Linear constraint:

a hyper plane through the origin 
in t space!

Degrees of Freedom:  Why is 2 with N data points “not quite”
the sum of N t2-values?  Because DOFs are reduced by constraints.
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Constraint is a plane cut through 
the origin.  Any cut through the 
origin of a sphere is a circle.

So the distribution of distance from origin is the same as a multivariate 
normal “ball” in the lower number of dimensions.  Thus, each linear 
constraint reduces  by exactly 1.

We don’t have explicit constraints on the yi’s.  But if we wiggle the yi’s
around (within the distribution of each) we want to keep the MLE estimate 
b0 (i.e., the curve) fixed so as to see how 2 is distributed for this MLE – not 
for all possible b’s.  (20 wiggling yi’s, 5 bi’s kept fixed.)

So by the implicit function theorem, there are M (number of parameters) 
approximately linear constraints on the yi ‘s.  So                         , the so-
called number of degrees of freedom (d.o.f.).

t1

t2
t3
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Review:

1. Fit for parameters by minimizing

2. (Co)variances of parameters, or 
confidence regions, by the change 
in 2 (i.e., 2) from its minimum 
value 2

min.

3. Goodness-of-fit (accept or reject 
model) by the p-value of 2

min
using the correct number of DOF.
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Don’t confuse typical values of 2 with typical values of  2 !

Goodness-of-fit with   degrees of freedom:

we expect

Confidence intervals for parameters b:

we expect

Answer: Once you have a particular data set, there is no uncertainty about 
what its 2

min is.  Let’s see how this works out in scaling with N:

2 increases linearly with  

2 increases as N (number of terms in sum), but also decreases
as   (N -1/2)2, since b becomes more accurate with increasing N :

quadratic, because at minimum

this is an RV over the population of different data 
sets (a frequentist concept allowing a p-value)

this is an RV over the population of possible model 
parameters for a single data set, a concept shared 
by Bayesians and frequentists

universal rule of thumb

χ2 ≈ χ2min ±O(1)

How can              be significant when the uncertainty is     ?±O(1)
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Let’s turn from (x,y,) data to data that comes as counts of things.

Two common examples are “binned values” (histograms) and contingency tables.

Counts are distributed according to (in general, unknown) probabilities pi or pij
across the bins or table entries.  The model (with parameters maybe) predicts 
the p’s.

ni ∼ Binomial(N, pi) {ni} ∼Multinomial(N, {pi})or more precisely,

For histograms (but not necessarily contingency tables) one commonly has

ni ¿ N ⇒ pi ¿ 1 for all i
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Binomial(n,N, p)⇒

P (n) =
N !

n!(N − n)!p
n(1− p)N−n

=
1

n!

N !

(N − n)!p
ne(N−n) ln(1−p)

≈ 1

n!
(Np)ne−(Np)

∼ Poisson(Np)

ni ¿ N ⇒ pi ¿ 1 for all i implies that counts are (close to) Poisson distributed

Sometimes this is not even an approximation, but exact because of how the 
data is gathered.  Everyone’s favorite example: radioactive decays.

x ∼ Poisson(λ)⇒ μ(x) = λ, Var(x) = λAlso recall,

It depends on whether N was a constraint, or “just happened”.  We will return to this 
issue when we discuss contingency tables: details of the exact protocol can subtly affect 
the statistics of the result.


