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Method 2: Sample from the posterior distribution

1.  Generate a large number of (vector) b’s

2.  Compute your          separately for each b

3.  Histogram

Note again that b is typically (close to) m.v. normal because of the CLT, but 
your (nonlinear) f may not, in general, be anything even close to normal!

What is the uncertainty in quantities other than the fitted coefficients:



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

bees = mvnrnd(bfit,covar,10000);
humps = bees(:,3).*bees(:,5);
hist(humps,30);
std(humps)

Our example:

std = 0.1833

b3b5

Does it matter that I use the full covar, not 
just the 2x2 piece for parameters 3 and 5?
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• Note that even with lots of data, so that the distribution of the b’s
really  multivariate normal, a derived quantity might be very non-
Normal.
– In this case, sampling the posterior is a good idea!

• For example, the ratio of two normals of zero mean is Cauchy
– which is very non-Normal!.

• So, sampling the posterior is a more powerful method than linear
propagation of errors.
– even when optimistically (or in ignorance) assuming multivariate 

Gaussian for the fitted parameters

• In fact, sampling the posterior distribution of large Bayesian models 
whose parameters are not at all Gaussian is, under the name 
MCMC, the most powerful technique in modern computational 
statistics.
– we’ll come back to this!

Compare linear propagation of errors to sampling the posterior
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• We applied some end-to-end process to a data set
(set of data points) and got a number f out

• The data set was drawn from a population of
data points in repetitions of the identical experiment

– which we don’t get to see, unfortunately
– we see only a sample of the population

• We’d like to draw new data sets from the population,
reapply the process, and see the distribution of answers
– this would tell us how accurate the original answer, on average, was
– but we can’t: we don’t have access to the population

• However, the data set itself is an estimate of the population pdf!
– in fact, it’s the only estimate we’ve got!

• So we draw from the data set – with replacement – many “fake”
data sets of equal size, and carry out the proposed program

– does this sound crazy?  for a long time many people thought so!
– Bootstrap theorem [glossing over technical assumptions]: The 

distribution of any resampled quantity around its full-data-set value 
estimates (naively: “asymptotically has the same histogram as”) the 
distribution of the data set value around the population value. 

Method 3: Bootstrap resampling of the data
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Let’s try a simple example where we can see the “hidden” side of things, too.

Visible side (sample): Hidden side (population):

These happen to be 
drawn from a 
Gamma distribution.

Statistic we are interested in happens to be (it could be anything):
mean of distribution
median of distribution

themedian = median(bigsample)
themean = mean(bigsample)
thestatistic = themean/themedian
themedian =

2.6730
themean =

2.9997
thestatistics =

1.1222

sammedian = median(sample)
sammean = mean(sample)
samstatistic = sammean/sammedian

sammedian =
2.6505

sammean =
2.9112

samstatistic =
1.0984

How accurate is this?
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To estimate the accuracy of our statistic, we bootstrap…

ndata = 100;
nboot = 100000;
vals = zeros(nboot,1); 
for j=1:nboot,

choose = randsample(ndata,ndata,true);
vals(j) = mean(sample(choose)) 

/median(sample(choose));
end
hist(vals,100)

ndata = 100;
nboot = 100000;
vals = zeros(nboot,1); 
for j=1:nboot,

sam = randg(3,[ndata 1]);
vals(j) = mean(sam)/median(sam);

end
hist(vals,100)

new sample of integers in 
1:ndata, with replacement

mean = 1.1223
std = 0.0545mean = 1.0928

std = 0.0604

Things to notice:
The mean of resamplings does not improve the original estimate!  (Same data!)
The distribution around the mean is not identical to that of the population. But it is 
close and would become identical asymptotically for large ndata (not nboot!).

distorted by peculiarities of 

the  particular data set
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ndata = 20;
nboot = 1000;
vals = zeros(nboot,1); 
ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)).^2);
for j=1:nboot,

samp = randsample(ndata,ndata,true);
xx = x(samp);
yy = y(samp);
ssig = sig(samp);
chisqfun = @(b) sum(((ymodel(xx,b)-yy)./ssig).^2);   
bguess = [1 2 .7 3.14 1.5];
options = optimset('MaxFunEvals',10000,'MaxIter', 

10000,'TolFun',0.001);
[b fval flag] = fminsearch(chisqfun,bguess,options); 
if (flag == 1), vals(j) = b(3)*b(5);
else vals(j) = 100; end

end
hist(vals(vals < 2),30);
std(vals(vals < 2))

You often have to customize your own bootstrap code, but it is not a big deal

new sample of integers in 1:ndata, with replacement

0.2924

here is the embedded “whole 
statistical analysis of a data set”
inside the bootstrap loop

4 values 
offscale (up 
to 27!)

So we get the peak around 
1, as before, but a much 
broader distribution.

b3b5
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here, or…

here

b3b5 ≈ 0.3 b3b5 ≈ 5

Can you guess what the extreme bootstrap 
cases look like, compared to the full data?

Is it “fair” for our estimate of b3b5 to have its accuracy “impuned” by data sets 
that “don’t look like” the full data? Deep frequentist philosophical question!

b3b5
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We previously compared bootstrap-from-sample to bootstrap-from-population.
More relevant, let’s compare boostrap-from-sample to sample-the-posterior:

sample the posterior bootstrap

• We could increase number of samples of posterior, and of bootstrap, to make both 
curves very smooth.

– the histograms would not converge to each other!
• We could increase the size of the underlying data sample

– from 20 (x,y) values to infinity (x,y) values
– the histograms would converge to each other (modulo technical assumptions)

• For finite size samples, each technique is a valid answer to a different question
– Frequentist: Imagining repetitions of the experiment, what would be the range of values 

obtained?
• And. conservatively, I shouldn’t expect my experiment to be better than that, should I?

– Bayesian: For exactly the data that I see, what is the probability distribution of the 
parameters?

• Because maybe I got lucky and my data set really nails the parameters!

b3b5 b3b5
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Note that sampling the posterior “honors” the stated measurement errors.
Bootstrap doesn’t.  That can be good!

Suppose (very toy example) the “statistic” is

then the posterior probability is

Note that this depends on the ’s!

The bootstrap (here noticeably discrete) doesn’t depend on the ’s.  In 
some sense it estimates them, too.

So, if the errors were badly underestimated, sampling the posterior would give 
too small an uncertainty, while bootstrap would still give a valid estimate.

If the errors are right, both estimates are valid. Notice 
that the model need not be correct.  Both procedures 
give estimates of the statistical uncertainty of 
parameters of even a wrong (badly fitting) model.  But 
for a wrong model, your interpretation of the 
parameters may not mean anything!
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Compare and contrast bootstrap resampling and sampling from the posterior

Both have same goal:   Estimate the accuracy of fitted parameters.

• Bootstrap is frequentist in outlook
– draw from “the population”
– even if we have only an estimate of it (the 

data set)
• Easy to code but computationally intensive

– great for getting your bearings
– must repeat your basic fitting calculation over 

all the data100 or 1000 times
• Applies to both model fitting and descriptive 

statistics
• Fails completely for some statistics

– e.g. (extreme example) “harmonic mean of 
distance between consecutive points”

– how can you be sure that your statistic is OK 
(without proving theorems)?

• Doesn’t generalize much
– take it or leave it!

• It is not always obvious what you should 
resample over

– things that are independent draws from a 
population

– “patients not polyps”

• Sampling from the posterior is Bayesian in 
outlook

– there is only one data set and it is never 
varied

– what varies from sample to sample is the 
goodness of fit of the parameters

– we don’t just sit on the (frequentist’s) MLE, we 
explore around

• In general harder to implement
– we haven’t learned how yet, except in the 

simple case of an assumed  multivariate 
normal posterior

– will come back to this later, when we do 
Markov Chain Monte Carlo (MCMC)

– may or may not be computationally intensive 
(depending on whether there are shortcuts 
possible in computing the posterior)

• Rich set of variations and generalizations 
are possible


