CS395T
 Computational Statistics with Application to Bioinformatics

Prof. William H. Press

Spring Term, 2011
The University of Texas at Austin

Lecture 11

Weighted Nonlinear Least Squares Fitting

a.k.a. χ^{2} Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation (with uniform prior and maybe some other normality assumptions)
these are not all exactly identical, but they're very close!
returned by Google for image search on "least squares fitting"!

$$
\left.\begin{array}{rlrl}
y_{i} & =y\left(\mathbf{x}_{i} \mid \mathbf{b}\right)+e_{i} & \begin{array}{l}
\text { measured values supposed to be a model, plus } \\
\text { an error term }
\end{array} \\
e_{i} & \sim N\left(0, \sigma_{i}\right) & & \text { the errors are Normal, either independently } \ldots
\end{array}\right] \begin{array}{ll}
\mathbf{e} \sim N(0, \boldsymbol{\Sigma}) & \\
& \begin{array}{l}
\ldots \text { or else with errors correlated in some known } \\
\text { way (e.g., multivariate Normal) }
\end{array}
\end{array}
$$

We want to find the parameters of the model \mathbf{b} from the data.

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

$$
\begin{aligned}
P\left(\mathbf{b} \mid\left\{y_{i}\right\}\right) & \propto P\left(\left\{y_{i}\right\} \mid \mathbf{b}\right) P(\mathbf{b}) \\
& \propto \prod_{i} \exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(\mathbf{x}_{i} \mid \mathbf{b}\right)}{\sigma_{i}}\right)^{2}\right] P(\mathbf{b}) \\
& \propto \exp \left[-\frac{1}{2} \sum_{i}\left(\frac{y_{i}-y\left(\mathbf{x}_{i} \mid \mathbf{b}\right)}{\sigma_{i}}\right)^{2}\right] P(\mathbf{b}) \\
& \propto \exp \left[-\frac{1}{2} \chi^{2}(\mathbf{b})\right] P(\mathbf{b})
\end{aligned}
$$

Now the idea is: Find (somehow!) the parameter value \mathbf{b}_{0} that minimizes χ^{2}.

For linear models, you can solve linear "normal equations" or, better, use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem, for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)

The desired MLE of the parameters is thus a χ^{2} minimization problem. (Not just an ad hoc choice! We maximize the posterior probability.)

$$
\begin{aligned}
& y(x \mid \mathbf{b})=b_{1} \exp \left(-b_{2} x\right)+b_{3} \exp \left(-\frac{1}{2} \frac{\left(x-b_{4}\right)^{2}}{b_{5}^{2}}\right) \\
& \chi^{2}=\sum_{i}\left(\frac{y_{i}-y\left(x_{i} \mid \mathbf{b}\right)}{\sigma_{i}}\right)^{2} \quad \begin{array}{l}
\text { Nonlinear fits are often easy in MATLAB (or other } \\
\text { high-level languages) if you can make a reasonable } \\
\text { starting guess for the parameters. }
\end{array}
\end{aligned}
$$

y model $=(a, b) b(1) * \exp (-b(2) * x)+b(3) * \exp (-(1 / 2) *((x-b(4)) / b(5)) .22)$ chisqfun $=(b) \operatorname{surf}((y$ model $(x, b)-y) \cdot / s i g) .22)$
bguess =[[llllll}
bguess =[[llllll}
bfit \quad f minsearch(chisqfun, bguess)
xfit $=$ (O: O. O1: 8);
yfit $=$ ymodel ($\times f i t$, bfit);
bfit $=1.1235$
3. 2654

Later, we'll suppose that what we really care about is the area of the bump, and that the other parameters are "nuisance parameters".

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?
Taylor series of any function of a vector:
$-\frac{1}{2} \chi^{2}(\mathbf{b}) \approx-\frac{1}{2} \chi_{\text {min }}^{2}-\frac{1}{2}\left(\mathbf{b}-\mathbf{b}_{0}\right)^{T}\left[\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \mathbf{b} \partial \mathbf{b}}\right]\left(\mathbf{b}-\mathbf{b}_{0}\right)$
While exploring the χ^{2} surface to find its minimum, we can also calculate the Hessian ($2^{\text {nd }}$ derivative) matrix at the minimum.

Then

$$
\begin{aligned}
& P\left(\mathbf{b} \mid\left\{y_{i}\right\}\right) \propto \exp \left[-\frac{1}{2}\left(\mathbf{b}-\mathbf{b}_{0}\right)^{T} \boldsymbol{\Sigma}_{b}^{-1}\left(\mathbf{b}-\mathbf{b}_{0}\right)\right] P(\mathbf{b}) \\
& \text { with } \\
& \boldsymbol{\Sigma}_{b}=\left[\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \mathbf{b} \partial \mathbf{b}}\right]^{-1} \quad \begin{array}{l}
\text { covariance (or "standard error") matrix } \\
\text { of the fitted parameters }
\end{array}
\end{aligned}
$$

Notice that if (i) the Taylor series converges rapidly and (ii) the prior is uniform, then the posterior distribution of the \mathbf{b} 's is multivariate Normal, a very useful CLT-ish result!

For our example, $\quad y(x \mid \mathbf{b})=b_{1} \exp \left(-b_{2} x\right)+b_{3} \exp \left(-\frac{1}{2} \frac{\left(x-b_{4}\right)^{2}}{b_{5}^{2}}\right)$
bfit =

1. 1235	1.5210	0.6582	3.2654	1.4832
hess $=$				
64.3290	-38.3070	47.9973	-29.0683	46.0495
-38.3070	31.8759	-67.3453	29.7140	-40.5978
47.9973	-67.3453	723.8271	-47.5666	154.9772
-29.0683	29.7140	-47.5666	68.6956	-18.0945
46.0495	-40.5978	154.9772	-18.0945	89.2739
covar $=$	0.2224	0.0068	-0.0309	0.0135
0.1349	0.6918	0.0052	-0.1598	0.1585
0.2224	0.0068	0.0052	0.0049	0.0016
0.0 .0 .0094				

This is the covariance structure of all the parameters, and indeed (at least in CLT normal approximation) gives their entire joint distribution!
The standard errors on each parameter separately are $\sigma_{i}=\sqrt{C_{i i}}$

```
sigs=
```

0. 3672
1. 8317
2. 0700
3. 2731
o. 3079

But why is this, and what about two or more parameters at a time (e.g. b_{3} and b_{5})?

We can Marginalize or Condition uninteresting parameters. (Different things!)

$$
P\left(\mathbf{b} \mid\left\{y_{i}\right\}\right) \propto \exp \left[-\frac{1}{2}\left(\mathbf{b}-\mathbf{b}_{0}\right)^{T} \boldsymbol{\Sigma}_{b}^{-1}\left(\mathbf{b}-\mathbf{b}_{0}\right)\right] P(\mathbf{b})
$$

Marginalize: (this is usual) Ignore (integrate over) uninteresting parameters.
In $\quad \boldsymbol{\Sigma}_{b}=\left[\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \mathbf{b} \partial \mathbf{b}}\right]^{-1}$ submatrix of interesting rows and columns is new $\boldsymbol{\Sigma}_{b}$
Special case of one variable at a time: Just take diagonal components in Σ_{b}
Covariances are pairwise expectations and don't depend on whether other parameters are "interesting" or not.

Condition: (this is rare!) Fix uninteresting parameters at specified values. In $\boldsymbol{\Sigma}_{b}^{-1}=\left[\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \mathbf{b} \partial \mathbf{b}}\right]$ submatrix of interesting rows and columns is new $\boldsymbol{\Sigma}_{b}^{-1}$

Take matrix inverse if you want their covariance Σ_{b}
(If you fix uninteresting parameters at any value other than \mathbf{b}_{0}, the mean also shifts exercise for reader to calculate!)

Example of 2 dimensions marginalizing or conditioning to 1 dimension:

$$
P\left(\mathbf{b} \mid\left\{y_{i}\right\}\right) \propto \exp \left[-\frac{1}{2}\left(\mathbf{b}-\mathbf{b}_{0}\right)^{T} \boldsymbol{\Sigma}_{b}^{-1}\left(\mathbf{b}-\mathbf{b}_{0}\right)\right] P(\mathbf{b})
$$

$$
\boldsymbol{\Sigma}_{b}^{-1}=\left[\frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial \mathbf{b} \partial \mathbf{b}}\right]=\left(\begin{array}{cc}
50 . & -49 . \\
-49 . & 50 .
\end{array}\right)
$$

$$
\Sigma_{b}=\left(\begin{array}{ll}
.505 & .495 \\
.495 & .505
\end{array}\right)
$$

By the way, don't confuse the "covariance matrix of the fitted parameters" with the "covariance matrix of the data". For example, the data covariance is often diagonal (uncorrelated σ_{i} 's), while the parameters covariance is essentially never diagona!!

If the data has correlated errors, then the starting point for $\chi^{2}(\mathbf{b})$ is (recall):
$\chi^{2}=\left[\mathbf{y}_{\{i\}}-\mathbf{y}\left(\mathbf{x}_{\{i\}} \mid \mathbf{b}\right)\right]^{T} \boldsymbol{\Sigma}^{-1}\left[\mathbf{y}_{\{i\}}-\mathbf{y}\left(\mathbf{x}_{\{i\}} \mid \mathbf{b}\right)\right] \quad$ instead of $\quad \sum_{i}\left(\frac{y_{i}-y\left(\mathbf{x}_{i} \mid \mathbf{b}\right)}{\sigma_{i}}\right)^{2}$

For our example, we are conditioning or marginalizing from 5 to 2 dims:

$$
y(x \mid \mathbf{b})=b_{1} \exp \left(-b_{2} x\right)+b_{3} \exp \left(-\frac{1}{2} \frac{\left(x-b_{4}\right)^{2}}{b_{5}^{2}}\right)
$$

the uncertainties on b_{3} and b_{5} jointly (as error ellipses) are

```
sigcond=
```

o. 0044
-0. 0076

- 0. 0076
o. 0357
si grarg $=$

0. $0049-0.0094$

- 0. $0094 \quad 0.0948$

Conditioned errors are always smaller, but are useful only if you can find other ways to measure (accurately) the parameters that you want to condition on.

Frequentists love MLE estimates (and not just the case with a Normal error model) because they have provably nice properties asymptotically as the size of the data set becomes large

- Consistency: converges to true value of the parameters
- Equivariance: estimate of function of parameter = function of estimate of parameter
- asymptotically Normal
- asymptotically efficient (optimal): among estimators with the above properties, it has the smallest variance

The "Fisher Information Matrix" is another name for the Hessian of the log probability (or, rather, log likelihood):

$$
\mathbf{I}(\mathbf{b})=-\left\langle\frac{\partial^{2} \log P\left(\left\{y_{i}\right\} \mid \mathbf{b}\right)}{\partial \mathbf{b} \partial \mathbf{b}}\right\rangle \approx 2 \boldsymbol{\Sigma}_{b}^{-1}
$$

Bayesians tolerate MLE estimates because they are almost Bayesian even better if you put the prior back into the minimization.

But Bayesians know that we live in a non-asymptotic world: none of the above properties are exactly true for finite data sets!

What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors
\mathbf{b}_{0} is the MLE parameters estimate

> nerdy math note: ∇f is technically a row (not column) vector, because it's a one-form
$\mathbf{b}_{1} \equiv \mathbf{b}-\mathbf{b}_{0}$ is the RV as the parameters fluctuate

$$
\begin{aligned}
& f \equiv f(\mathbf{b})=f\left(\mathbf{b}_{0}\right)+\nabla f \mathbf{b}_{1}+\cdots \\
&\langle f\rangle \approx\left\langle f\left(\mathbf{b}_{0}\right)\right\rangle+\nabla f\left\langle\mathbf{b}_{1}\right\rangle=f\left(\mathbf{b}_{0}\right) \\
&\left\langle f^{2}\right\rangle-\langle f\rangle^{2} \approx 2 f\left(\mathbf{b}_{0}\right)\left(\nabla f\left\langle\mathbf{b}_{1}\right\rangle\right)+\left\langle\left(\nabla f \mathbf{b}_{1}\right)^{2}\right\rangle \\
&=\nabla f\left\langle\mathbf{b}_{1} \mathbf{b}_{1}^{T}\right\rangle \nabla f^{T} \\
&=\nabla f \mathbf{\Sigma}_{b} \nabla f^{T}
\end{aligned}
$$

In our example, if we are interested in the area of the "hump",

```
bfit=
```

1. 5210
2. 6582
3. 2654
4. 4832
covar =
O. 1349
O. 2224
5. 0068

- 0. 0309

0. 0135
o. 2224
o. 6918
o. 0052

- 0. 1598
o. 1585
o. 0068

0. 0052
o. 0049
o. 0016

- O. 0094
-0. 0309
- o. 1598

0. 0016
o. 0746

- 0.0444

0. 0135
o. 1585
o. 0094

- 0.0444
o. 0948

$$
f=b_{3} b_{5}
$$

$$
\nabla f=\left(0,0, b_{5}, 0, b_{3}\right)
$$

$$
\nabla f \boldsymbol{\Sigma} \nabla f^{T}=b_{5}^{2} \Sigma_{33}+2 b_{3} b_{5} \Sigma_{35}+b_{3}^{2} \Sigma_{55}=0.0336
$$

$$
\sqrt{0.0336}=0.18
$$

So $b_{3} b_{5}=0.98 \pm 0.18 \longleftarrow \begin{gathered}\text { the one standard deviation } \\ (1-\sigma) \text { error bar }\end{gathered}$

Is it normally distributed?
Absolutely not! A function of normals is not normal (although, if they are all narrow, it might be close).

