
The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 1

CS395T
Computational Statistics with
Application to Bioinformatics

Prof. William H. Press
Spring Term, 2011

The University of Texas at Austin

Lecture 11

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 2

Weighted Nonlinear Least Squares Fitting
a.k.a. 2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation

(with uniform prior and maybe
some other normality assumptions)

these are not all exactly identical,
but they’re very close!

measured values supposed to be a model, plus
an error term

the errors are Normal, either independently…

… or else with errors correlated in some known
way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.

returned by Google for
image search on “least
squares fitting”!

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 3

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

Now the idea is: Find (somehow!) the parameter value b0 that
minimizes 2 .

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 4

The desired MLE of the parameters is thus a 2 minimization problem.
(Not just an ad hoc choice! We maximize the posterior probability.)

ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)).^2)

chisqfun = @(b) sum(((ymodel(x,b)-y)./sig).^2)

χ2 =
X
i

µ
yi − y(xi|b)

σi

¶2y(x|b) = b1 exp(−b2x) + b3 exp
µ
−12

(x− b4)2
b25

¶

bguess = [1 2 .5 3 1.5]

bfit = fminsearch(chisqfun,bguess)

xfit = (0:0.01:8);

yfit = ymodel(xfit,bfit);

bfit = 1.1235 1.5210 0.6582

3.2654 1.4832

Later, we’ll suppose that what we really
care about is the area of the bump, and
that the other parameters are “nuisance
parameters”.

Nonlinear fits are often easy in MATLAB (or other
high-level languages) if you can make a reasonable
starting guess for the parameters.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 5

Taylor series of any function of a vector:

While exploring the 2 surface to find its minimum, we can also calculate
the Hessian (2nd derivative) matrix at the minimum.

Then

with

covariance (or “standard error”) matrix
of the fitted parameters

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Notice that if (i) the Taylor series converges rapidly and (ii) the
prior is uniform, then the posterior distribution of the b’s is
multivariate Normal, a very useful CLT-ish result!

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 6

Numerical calculation of the Hessian by finite difference

∂2f

∂x∂y
≈ 1

2h

µ
f++ − f−+

2h
− f+− − f−−

2h

¶
=

1

4h2
(f++ + f−− − f+− − f−+)

chisqfun = @(b) sum(((ymodel(x,b)-y)./sig).^2)
h = 0.1;
unit = @(i) (1:5) == i;
hess = zeros(5,5);
for i=1:5, for j=1:5,

bpp = bfit + h*(unit(i)+unit(j));
bmm = bfit + h*(-unit(i)-unit(j));
bpm = bfit + h*(unit(i)-unit(j));
bmp = bfit + h*(-unit(i)+unit(j));
hess(i,j) = (chisqfun(bpp)+chisqfun(bmm)…
-chisqfun(bpm)-chisqfun(bmp))./(2*h)^2;

end
end
covar = inv(0.5*hess)

bfit = 1.1235 1.5210 0.6582 3.2654 1.4832

This also works for the diagonal
components. Can you see how?

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 7

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

hess =
64.3290 -38.3070 47.9973 -29.0683 46.0495
-38.3070 31.8759 -67.3453 29.7140 -40.5978
47.9973 -67.3453 723.8271 -47.5666 154.9772
-29.0683 29.7140 -47.5666 68.6956 -18.0945
46.0495 -40.5978 154.9772 -18.0945 89.2739

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746 -0.0444
0.0135 0.1585 -0.0094 -0.0444 0.0948

This is the covariance structure of all the parameters, and indeed (at least in
CLT normal approximation) gives their entire joint distribution!

But why is this, and what about two or more parameters at a
time (e.g. b3 and b5)?

y(x|b) = b1 exp(−b2x) + b3 exp
µ
−12

(x− b4)2
b25

¶

σi =
√
Cii

For our example,

sigs =
0.3672 0.8317 0.0700 0.2731 0.3079

The standard errors on each parameter separately are

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 8

We can Marginalize or Condition uninteresting parameters. (Different things!)

Condition: (this is rare!) Fix uninteresting parameters at specified values.

In submatrix of interesting rows and columns is new

Take matrix inverse if you want their covariance
(If you fix uninteresting parameters at any value other than b0, the mean also shifts –
exercise for reader to calculate!)

Marginalize: (this is usual) Ignore (integrate over) uninteresting parameters.

In submatrix of interesting rows and columns is new

Special case of one variable at a time: Just take diagonal components in

Covariances are pairwise expectations and don’t depend on whether other
parameters are “interesting” or not.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 9

By the way, don’t confuse the “covariance matrix of the fitted parameters” with the
“covariance matrix of the data”. For example, the data covariance is often
diagonal (uncorrelated i’s), while the parameters covariance is essentially never
diagonal!

Example of 2 dimensions marginalizing or conditioning to 1 dimension:

If the data has correlated errors, then the starting point for 2(b) is (recall):

instead of

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 10

sigcond =
0.0044 -0.0076
-0.0076 0.0357

sigmarg =
0.0049 -0.0094
-0.0094 0.0948

y(x|b) = b1 exp(−b2x) + b3 exp
µ
−12

(x− b4)2
b25

¶For our example, we are conditioning or marginalizing from 5 to 2 dims:

the uncertainties on b3 and b5 jointly (as error ellipses) are

Conditioned errors are always smaller, but are useful only if you can find other
ways to measure (accurately) the parameters that you want to condition on.

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 11

Frequentists love MLE estimates (and not just the case with a Normal
error model) because they have provably nice properties asymptotically
as the size of the data set becomes large

• Consistency: converges to true value of the parameters
• Equivariance: estimate of function of parameter = function of

estimate of parameter
• asymptotically Normal
• asymptotically efficient (optimal): among estimators with the above

properties, it has the smallest variance

Bayesians tolerate MLE estimates because they are almost Bayesian –
even better if you put the prior back into the minimization.

But Bayesians know that we live in a non-asymptotic world: none of the
above properties are exactly true for finite data sets!

The “Fisher Information Matrix” is another name for the Hessian of the log
probability (or, rather, log likelihood):

except that, strictly speaking, it is an
expectation over the population

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 12

­
f2
®
− hfi2 ≈ 2f(b0)(∇f hb1i) +

­
(∇f b1)2

®
= ∇f

­
b1b

T
1

®
∇f T

= ∇f Σb∇f T

hfi ≈ hf(b0)i+∇f hb1i = f(b0)

nerdy math note: is
technically a row (not column)
vector, because it’s a one-form

What is the uncertainty in quantities other than the fitted coefficients:

Method 1: Linearized propagation of errors ∇f

f ≡ f(b) = f(b0) +∇f b1 + · · ·

b0

b1 ≡ b − b0
is the MLE parameters estimate

is the RV as the parameters fluctuate

The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

f = b3b5

In our example, if we are interested in the area of the “hump”,

∇f = (0, 0, b5, 0, b3)

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746 -0.0444
0.0135 0.1585 -0.0094 -0.0444 0.0948

So
the one standard deviation
(1-) error bar

Is it normally distributed?
Absolutely not! A function of normals is not normal (although, if they
are all narrow, it might be close).

∇f Σ∇fT = b25Σ33 + 2b3b5Σ35 + b23Σ55 = 0.0336

b3b5 = 0.98± 0.18

√
0.0336 = 0.18

