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notice the “hard edges”
this is biology!

This is kind of fun, because it’s not just the usual featureless scatter plot

Is there a significant correlation here?  If the first intron is long, does the second one 
also tend to be?  Or is our eye being fooled by the non-Gaussian shape?

Log10 of size of 1st and 2nd introns for 1000 genes:
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credit: Alberts et al.
Molecular Biology of the Cell

Biology:

The hard lower bounds 
on intron length are 
because the intron has to 
fit around the “big”
spliceosome machinery!

It’s all carefully arranged 
to allow exons of any 
length, even quite small.

Why?  Could the 
spliceosome have 
evolved to require a 
minimum exon length, 
too?  Are we seeing 
chance early history, or 
selection?
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The covariance matrix is a more general idea than just for multivariate Normal.
You can compute the covariances of any set of random variables.
It’s the generalizaton to M-dimensions of the (centered) second moment Var.

For multiple r.v.’s, all the possible covariances form a (symmetric) matrix:

Notice that the diagonal elements are the variances of the individual variables.

The variance of any linear combination of r.v.’s is a quadratic form in C :

This also shows that C is positive definite, so it can still be visualized as an ellipsoid in 
the space of the r.v.’s., where the directions are the different linear combinations.
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The covariance matrix is closely related to the linear correlation matrix.

more often seen 
written out as

When the null hypothesis is that X and Y are independent r.v.’s, then r is 
useful as a p-value statistic (“test for correlation”), because

r
√
N

r ∼ N(0,N−1/2)
1.  For large numbers of data points N, it is normally distributed, 

so  is a normal t-value

2. With small numbers of data points, if the underlying distribution 
is multivariate normal, there is a simple form for the p-value 
(comes from a Student t distribution).

rij =
Cijp
CiiCjj

3.  If you substitute ranks for values, there is a universal distribution 
related to Student t.  This is Spearman correlation.
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r = sig ./ sqrt(diag(sig) * diag(sig)')
tval = sqrt(numel(len1))*r
r =

1.0000    0.3843
0.3843    1.0000

tval =
31.6228   12.1511
12.1511   31.6228

[rr p] = corrcoef(i1llen,i2llen)
rr =

1.0000    0.3843
0.3843    1.0000

p =
1.0000    0.0000
0.0000    1.0000

statistical significance of the correlation in 
standard deviations (but note: uses CLT)

Matlab has built-ins

For the exon length data, we can easily 
now show that the correlation is highly 
significant.

not clear why Matlab reports 1 on the 
diagonals.  I’d call it 0!
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Let’s talk more about chi-square.
Recall that a t-value is (by definition) a deviate from

is a distribution (special case of Gamma), defined as

χ2 =
X
i

µ
xi − μi
σi

¶2
, xi ∼ N(μi,σi)

2 is a “statistic” defined as the sum of the squares of n independent t-values.

The important theorem is that 2 is in fact distributed as Chisquare.

Let’s prove it.
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Prove first the case of =1:

pY (y) dy = 2pX(x) dx

So, pY (y) = y
−1/2pX(y1/2) = 1√

2πy
e−

1
2y

pX(x) =
1√
2π
e−

1
2x

2 ⇒ x ∼ N(0, 1)Suppose

and y = x2
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To prove the general case for integer , compute the characteristic function

Since we already proved that =1 is the 
distribution of a single t2-value, this proves that 
the general  case is the sum of  t2-values.
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χ2 =
X
i

µ
xi − μi
σi

¶2
, xi ∼ N(μi,σi)

Question:  What is the generalization of

to the case where the xi’s are normal, but not independent?
I.e., x comes from a multivariate Normal distribution?

Answer:

Σ = LLT , Ly = x− μ,

χ2 = (x− μ)TΣ−1(x− μ), x ∼ N(μ,Σ)

Proof is one of those Cholesky things,

show that y is product of independent N(0,1)’s, as we did before,
and that

χ2 = yTy =
X

y2i
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Weighted Nonlinear Least Squares Fitting
a.k.a. 2 Fitting
a.k.a. Maximum Likelihood Estimation of Parameters (MLE)
a.k.a. Bayesian parameter estimation

(with uniform prior and maybe
some other normality assumptions) 

these are not all exactly identical, 
but they’re very close!

measured values supposed to be a model, plus 
an error term

the errors are Normal, either independently…

… or else with errors correlated in some known 
way (e.g., multivariate Normal)

We want to find the parameters of the model b from the data.

returned by Google for 
image search on “least 
squares fitting”!
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An example might be something like fitting a known functional form to data

Fit 5 parameters from 20 
irregularly space points, with 
normal errors of known 
standard deviations.

Can we do it?  How well?

f(x) = b1 exp(−b2x) + b3 exp
µ
−12

(x− b4)2
b25

¶

for example, this rise might be an instrumental or 
noise effect, while this bump might be what you 
are really interested in

Underlying curve is known to 
nature, but not to us!  We see 
only the red data points.



The University of Texas at Austin, CS 395T, Spring 2011, Prof. William H. Press 13

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

Now the idea is:  Find (somehow!) the parameter value b0 that 
minimizes 2 .

For linear models, you can solve linear “normal equations” or, better, 
use Singular Value Decomposition.  See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem, 
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)
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By the way, minimum finding in general is 
as hard as any computationally hard 
problem!

For example factoring integers:

has a single global minimum of 0 if C is product of two primes,
multiple minima of 0 if C is product of more than two primes,
global minimum > 0 if C is prime

So, in real life, global minimum finding is only as good as your ability to guess a 
starting value in the “basin of convergence” of the minimum.  Different 
numerical methods have better or worse basins of convergence.

Methods specialized to 2 fitting are often much better for 2 problems than 
general methods.


